AIMC Topic: Predictive Value of Tests

Clear Filters Showing 1891 to 1900 of 2216 articles

Noninvasive prediction of esophagogastric varices in hepatitis B: An extreme gradient boosting model based on ultrasound and serology.

World journal of gastroenterology
BACKGROUND: Severe esophagogastric varices (EGVs) significantly affect prognosis of patients with hepatitis B because of the risk of life-threatening hemorrhage. Endoscopy is the gold standard for EGV detection but it is invasive, costly and carries ...

Machine learning-based reconstruction of prognostic staging for gastric cancer patients with different differentiation grades: A multicenter retrospective study.

World journal of gastroenterology
BACKGROUND: The prognosis of gastric cancer (GC) patients is poor, and an accurate prognostic staging system would help assess patients' prognostic status before treatment and determine appropriate treatment strategies.

Artificial intelligence in bronchoscopy: a systematic review.

European respiratory review : an official journal of the European Respiratory Society
BACKGROUND: Artificial intelligence (AI) systems have been implemented to improve the diagnostic yield and operators' skills within endoscopy. Similar AI systems are now emerging in bronchoscopy. Our objective was to identify and describe AI systems ...

Predicting In-Hospital Mortality in Patients With Acute Myocardial Infarction: A Comparison of Machine Learning Approaches.

Clinical cardiology
BACKGROUND: Acute myocardial infarction (AMI) remains a leading global cause of mortality. This study explores predictors of in-hospital mortality among AMI patients using advanced machine learning (ML) techniques.

Real world clinical experience of using Brainomix e-CTA software in a medium size acute National Health Service Trust.

The British journal of radiology
OBJECTIVES: Artificial intelligence (AI) software including Brainomix "e-CTA" which detect large vessel occlusions (LVO) have clinical potential. We hypothesized that in real world use where prevalence is low, its clinical utility may be overstated.

External validation of a machine learning-based classification algorithm for ambulatory heart rhythm diagnostics in pericardioversion atrial fibrillation patients using smartphone photoplethysmography: the SMARTBEATS-ALGO study.

Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
AIMS: The aim of this study was to perform an external validation of an automatic machine learning (ML) algorithm for heart rhythm diagnostics using smartphone photoplethysmography (PPG) recorded by patients with atrial fibrillation (AF) and atrial f...

Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study.

World journal of gastroenterology
BACKGROUND: To investigate the preoperative factors influencing textbook outcomes (TO) in Intrahepatic cholangiocarcinoma (ICC) patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO, we dev...

Construction and validation of machine learning-based predictive model for colorectal polyp recurrence one year after endoscopic mucosal resection.

World journal of gastroenterology
BACKGROUND: Colorectal polyps are precancerous diseases of colorectal cancer. Early detection and resection of colorectal polyps can effectively reduce the mortality of colorectal cancer. Endoscopic mucosal resection (EMR) is a common polypectomy pro...

Research on Prediction model of Carotid-Femoral Pulse Wave Velocity: Based on Machine Learning Algorithm.

Journal of clinical hypertension (Greenwich, Conn.)
Carotid-femoral pulse wave velocity (cf-PWV) is an important but difficult to obtain measure of arterial stiffness and an independent predictor of cardiovascular events and all-cause mortality. The objective of this study was to develop a predictive ...