AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Predictive Value of Tests

Showing 321 to 330 of 2091 articles

Clear Filters

Assessment of EMR ML Mining Methods for Measuring Association between Metal Mixture and Mortality for Hypertension.

High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension
INTRODUCTION: There are limited data available regarding the connection between heavy metal exposure and mortality among hypertension patients.

Predicting Intracranial Aneurysm Rupture: A Multifactor Analysis Combining Radscore, Morphology, and PHASES Parameters.

Academic radiology
RATIONALE AND OBJECTIVES: We aimed at developing and validating a nomogram and machine learning (ML) models based on radiomics score (Radscore), morphology, and PHASES to predict intracranial aneurysm (IA) rupture.

Assessment of left ventricular wall thickness and dimension: accuracy of a deep learning model with prediction uncertainty.

The international journal of cardiovascular imaging
Left ventricular (LV) geometric patterns aid clinicians in the diagnosis and prognostication of various cardiomyopathies. The aim of this study is to assess the accuracy and reproducibility of LV dimensions and wall thickness using deep learning (DL)...

Artificial intelligence-based classification of cardiac autonomic neuropathy from retinal fundus images in patients with diabetes: The Silesia Diabetes Heart Study.

Cardiovascular diabetology
BACKGROUND: Cardiac autonomic neuropathy (CAN) in diabetes mellitus (DM) is independently associated with cardiovascular (CV) events and CV death. Diagnosis of this complication of DM is time-consuming and not routinely performed in the clinical prac...

Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data.

Breast (Edinburgh, Scotland)
PURPOSE: In breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise meth...

Impact of training data composition on the generalizability of convolutional neural network aortic cross-section segmentation in four-dimensional magnetic resonance flow imaging.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: Four-dimensional cardiovascular magnetic resonance flow imaging (4D flow CMR) plays an important role in assessing cardiovascular diseases. However, the manual or semi-automatic segmentation of aortic vessel boundaries in 4D flow data int...

Combining Image Similarity and Predictive Artificial Intelligence Models to Decrease Subjectivity in Thyroid Nodule Diagnosis and Improve Malignancy Prediction.

Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists
OBJECTIVES: To evaluate the efficacy of combining predictive artificial intelligence (AI) and image similarity model to risk stratify thyroid nodules, using retrospective external validation study.

Machine Learning Model Predicts Postoperative Outcomes in Chronic Rhinosinusitis With Nasal Polyps.

Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery
OBJECTIVE: Evaluating the possibility of predicting chronic rhinosinusitis with nasal polyps (CRSwNP) disease course using Artificial Intelligence.

Exploring the accuracy of tooth loss prediction between a clinical periodontal prognostic system and a machine learning prognostic model.

Journal of clinical periodontology
AIM: The aim of this analysis was to compare a clinical periodontal prognostic system and a developed and externally validated artificial intelligence (AI)-based model for the prediction of tooth loss in periodontitis patients under supportive period...