AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prognosis

Showing 221 to 230 of 3140 articles

Clear Filters

Prognosis of p16 and Human Papillomavirus Discordant Oropharyngeal Cancers and the Exploration of Using Natural Language Processing to Analyze Free-Text Pathology Reports.

JCO clinical cancer informatics
PURPOSE: Treatment deintensification for human papillomavirus-positive (HPV+)-associated oropharyngeal cancer (OPC) has been the catalyst of experts worldwide. In situ hybridization is optimal to identify HPV+ OPC, but immunohistochemistry for its su...

Multi-omics and single-cell analysis reveals machine learning-based pyrimidine metabolism-related signature in the prognosis of patients with lung adenocarcinoma.

International journal of medical sciences
Pyrimidine metabolism is a hallmark of tumor metabolic reprogramming, while its significance in the prognostic and therapeutic implications of patients with lung adenocarcinoma (LUAD) still remains unclear. In this study, an integrated framework of...

Recurrence patterns and prediction of survival after recurrence for gallbladder cancer.

Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract
BACKGROUND: Gallbladder cancer (GBC) is associated with a poor prognosis. Recurrence patterns and their effect on survival remain ill-defined. This study aimed to analyze recurrence patterns and develop a machine learning (ML) model to predict surviv...

A predictive model for recurrence in patients with borderline ovarian tumor based on neural multi-task logistic regression.

BMC cancer
BACKGROUND: Effective management of patients with borderline ovarian tumor (BOT) requires the timely identification of those at a higher risk of recurrence. Artificial neural networks have been successfully used in many areas of clinical event predic...

Prediction of tuberculosis treatment outcomes using biochemical makers with machine learning.

BMC infectious diseases
BACKGROUND: Tuberculosis (TB) continues to pose a significant threat to global public health. Enhancing patient prognosis is essential for alleviating the disease burden.

Multicenter study on predicting postoperative upper limb muscle strength improvement in cervical spinal cord injury patients using radiomics and deep learning.

Scientific reports
Cervical spinal cord injury is often catastrophic, frequently leading to irreversible impairment. MRI has become the gold standard for evaluating spinal cord injuries (SCI). Our study aimed to assess the accuracy of a radiomics approach, based on mac...

Development and validation of MRI-derived deep learning score for non-invasive prediction of PD-L1 expression and prognostic stratification in head and neck squamous cell carcinoma.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Immunotherapy has revolutionized the treatment landscape for head and neck squamous cell carcinoma (HNSCC) and PD-L1 combined positivity score (CPS) scoring is recommended as a biomarker for immunotherapy. Therefore, this study aimed to d...

Advanced prognostic modeling with deep learning: assessing long-term outcomes in liver transplant recipients from deceased and living donors.

Journal of translational medicine
BACKGROUND: Predicting long-term outcomes in liver transplantation remain a challenging endeavor. This research aims to harness the power of deep learning to develop an advanced prognostic model for assessing long-term outcomes, with a specific focus...

Machine learning-based identification of co-expressed genes in prostate cancer and CRPC and construction of prognostic models.

Scientific reports
The objective of this study was to employ machine learning to identify shared differentially expressed genes (DEGs) in prostate cancer (PCa) initiation and castration resistance, aiming to establish a robust prognostic model and enhance understanding...

Predicting major adverse cardiac events in diabetes and chronic kidney disease: a machine learning study from the Silesia Diabetes-Heart Project.

Cardiovascular diabetology
BACKGROUND: People living with diabetes mellitus (DM) and chronic kidney disease (CKD) are at significantly high risk of cardiovascular events (CVEs), however the predictive performance of traditional risk prediction methods are limited.