AIMC Topic: Protein Interaction Maps

Clear Filters Showing 41 to 50 of 375 articles

Statistical and machine learning based platform-independent key genes identification for hepatocellular carcinoma.

PloS one
Hepatocellular carcinoma (HCC) is the most prevalent and deadly form of liver cancer, and its mortality rate is gradually increasing worldwide. Existing studies used genetic datasets, taken from various platforms, but focused only on common different...

Identification of biomarkers associated with coronary artery disease and non-alcoholic fatty liver disease by bioinformatics analysis and machine learning.

Scientific reports
The constantly emerging evidence indicates a close association between coronary artery disease (CAD) and non-alcoholic fatty liver disease (NAFLD). However, the exact mechanisms underlying their mutual relationship remain undefined. This study aims t...

Identification of ubiquitination-related key biomarkers and immune infiltration in Crohn's disease by bioinformatics analysis and machine learning.

Scientific reports
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD. Differen...

Identification and validation of key autophagy-related genes in lupus nephritis by bioinformatics and machine learning.

PloS one
INTRODUCTION: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relat...

Deciphering the role of metal ion transport-related genes in T2D pathogenesis and immune cell infiltration via scRNA-seq and machine learning.

Frontiers in immunology
INTRODUCTION: Type 2 diabetes (T2D) is a complex metabolic disorder with significant global health implications. Understanding the molecular mechanisms underlying T2D is crucial for developing effective therapeutic strategies. This study employs sing...

Identification of lipid metabolism-related gene markers and construction of a diagnostic model for multiple sclerosis: An integrated analysis by bioinformatics and machine learning.

Analytical biochemistry
BACKGROUND: Multiple sclerosis (MS) is an autoimmune inflammatory disorder that causes neurological disability. Dysregulated lipid metabolism contributes to the pathogenesis of MS. This study aimed to identify lipid metabolism-related gene markers an...

A graph neural network approach for hierarchical mapping of breast cancer protein communities.

BMC bioinformatics
BACKGROUND: Comprehensively mapping the hierarchical structure of breast cancer protein communities and identifying potential biomarkers from them is a promising way for breast cancer research. Existing approaches are subjective and fail to take info...

Establishment of a nomogram model based on immune-related genes using machine learning for aortic dissection diagnosis and immunomodulation assessment.

International journal of medical sciences
The clinical manifestation of aortic dissection (AD) is complex and varied, making early diagnosis crucial for patient survival. This study aimed to identify immune-related markers to establish a nomogram model for AD diagnosis. Three datasets from G...

PPILS: Protein-protein interaction prediction with language of biological coding.

Computers in biology and medicine
Protein-protein interactions within a cell are essential for various fundamental biological processes. Computational techniques have arisen in bioinformatics due to the challenging and resource-intensive nature of experimental protein pair interactio...

Supervised learning approaches for predicting Ebola-Human Protein-Protein interactions.

Gene
The goal of this research work is to predict protein-protein interactions (PPIs) between the Ebola virus and the host who is at risk of infection. Since there are very limited databases available on the Ebola virus; we have prepared a comprehensive d...