AIMC Topic: Radiomics

Clear Filters Showing 331 to 340 of 618 articles

Preoperative CT-based radiomics and deep learning model for predicting risk stratification of gastric gastrointestinal stromal tumors.

Medical physics
BACKGROUND: Gastrointestinal stromal tumors (GISTs) are clinically heterogeneous with various malignant potential in different individuals. It is crucial to explore a reliable method for preoperative risk stratification of gastric GISTs noninvasively...

Radiomics and artificial intelligence applications in pediatric brain tumors.

World journal of pediatrics : WJP
BACKGROUND: The study of central nervous system (CNS) tumors is particularly relevant in the pediatric population because of their relatively high frequency in this demographic and the significant impact on disease- and treatment-related morbidity an...

A novel radiomics approach for predicting TACE outcomes in hepatocellular carcinoma patients using deep learning for multi-organ segmentation.

Scientific reports
Transarterial chemoembolization (TACE) represent the standard of therapy for non-operative hepatocellular carcinoma (HCC), while prediction of long term treatment outcomes is a complex and multifactorial task. In this study, we present a novel machin...

Can Machine Learning Models Based on Computed Tomography Radiomics and Clinical Characteristics Provide Diagnostic Value for Epstein-Barr Virus-Associated Gastric Cancer?

Journal of computer assisted tomography
OBJECTIVE: The aim of this study was to explore whether machine learning model based on computed tomography (CT) radiomics and clinical characteristics can differentiate Epstein-Barr virus-associated gastric cancer (EBVaGC) from non-EBVaGC.

Learning and depicting lobe-based radiomics feature for COPD Severity staging in low-dose CT images.

BMC pulmonary medicine
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory condition that imposes a significant healthcare burden worldwide. Accurate staging of COPD severity is crucial for patient management and treatment p...

Perfect Match: Radiomics and Artificial Intelligence in Cardiac Imaging.

Circulation. Cardiovascular imaging
Cardiovascular diseases remain a significant health burden, with imaging modalities like echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging playing a crucial role in diagnosis and prognosis. However, the inherent he...

A machine learning model based on clinical features and ultrasound radiomics features for pancreatic tumor classification.

Frontiers in endocrinology
OBJECTIVE: This study aimed to construct a machine learning model using clinical variables and ultrasound radiomics features for the prediction of the benign or malignant nature of pancreatic tumors.

Endoscopic ultrasonography-based intratumoral and peritumoral machine learning radiomics analyses for distinguishing insulinomas from non-functional pancreatic neuroendocrine tumors.

Frontiers in endocrinology
OBJECTIVES: To develop and validate radiomics models utilizing endoscopic ultrasonography (EUS) images to distinguish insulinomas from non-functional pancreatic neuroendocrine tumors (NF-PNETs).