BACKGROUND: Noninvasively and accurately predicting subcarinal lymph node metastasis (SLNM) for patients with non-small cell lung cancer (NSCLC) remains challenging. This study was designed to develop and validate a tumor and subcarinal lymph nodes (...
OBJECTIVE: To test the ability of high-performance machine learning (ML) models employing clinical, radiological, and radiomic variables to improve non-invasive prediction of the pathological status of prostate cancer (PCa) in a large, single-institu...
RATIONALE AND OBJECTIVES: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to expl...
BACKGROUND: Surgery combined with radiotherapy substantially escalates the likelihood of encountering complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of Deep-learning-based radiomics of i...
OBJECTIVES: To investigate the usefulness of machine learning (ML) models using pretreatment F-FDG-PET-based radiomic features for predicting adverse clinical events (ACEs) in patients with cardiac sarcoidosis (CS).
RATIONALE AND OBJECTIVES: This study aimed to construct a machine learning radiomics-based model using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) images to evaluate non-sentinel lymph node (NSLN) metastasis in Chinese breast cance...
Acta radiologica (Stockholm, Sweden : 1987)
Mar 15, 2024
BACKGROUND: Transcatheter arterial chemoembolization (TACE) is a mainstay treatment for intermediate and advanced hepatocellular carcinoma (HCC), with the potential to enhance patient survival. Preoperative prediction of postoperative response to TAC...
Cancer imaging : the official publication of the International Cancer Imaging Society
Mar 14, 2024
The specific genetic subtypes that gliomas exhibit result in variable clinical courses and the need to involve multidisciplinary teams of neurologists, epileptologists, neurooncologists and neurosurgeons. Currently, the diagnosis of gliomas pivots ma...
Journal of imaging informatics in medicine
Mar 13, 2024
Breast cancer holds the highest diagnosis rate among female tumors and is the leading cause of death among women. Quantitative analysis of radiological images shows the potential to address several medical challenges, including the early detection an...
Generally, due to a lack of explainability, radiomics based on deep learning has been perceived as a black-box solution for radiologists. Automatic generation of diagnostic reports is a semantic approach to enhance the explanation of deep learning ra...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.