AIMC Topic:
ROC Curve

Clear Filters Showing 1501 to 1510 of 3176 articles

Artificial intelligence for detection of periapical lesions on intraoral radiographs: Comparison between convolutional neural networks and human observers.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVE: The aim of this study was to compare the diagnostic performance of convolutional neural networks (CNNs) with the performance of human observers for the detection of simulated periapical lesions on periapical radiographs.

Development and validation of a deep-learning-based pediatric early warning system: A single-center study.

Biomedical journal
BACKGROUND: Early detection and prompt intervention for clinically deteriorating events are needed to improve clinical outcomes. There have been several attempts at this, including the introduction of rapid response teams (RRTs) with early warning sc...

An objective structural and functional reference standard in glaucoma.

Scientific reports
The current lack of consensus for diagnosing glaucoma makes it difficult to develop diagnostic tests derived from deep learning (DL) algorithms. In the present study, we propose an objective definition of glaucomatous optic neuropathy (GON) using cle...

QAIS-DSNN: Tumor Area Segmentation of MRI Image with Optimized Quantum Matched-Filter Technique and Deep Spiking Neural Network.

BioMed research international
Tumor segmentation in brain MRI images is a noted process that can make the tumor easier to diagnose and lead to effective radiotherapy planning. Providing and building intelligent medical systems can be considered as an aid for physicians. In many c...

Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting Clinically Significant Functional Improvement in a Mixed Population of Primary Hip Arthroscopy.

Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association
PURPOSE: To (1) develop and validate a machine learning algorithm to predict clinically significant functional improvements after hip arthroscopy for femoroacetabular impingement syndrome and to (2) develop a digital application capable of providing ...

The Feature Ambiguity Mitigate Operator model helps improve bone fracture detection on X-ray radiograph.

Scientific reports
This study was performed to propose a method, the Feature Ambiguity Mitigate Operator (FAMO) model, to mitigate feature ambiguity in bone fracture detection on radiographs of various body parts. A total of 9040 radiographic studies were extracted. Th...

Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics.

European radiology
OBJECTIVE: To investigate the application of machine learning-based ultrasound radiomics in preoperative classification of primary and metastatic liver cancer.

A Novel Protein Mapping Method for Predicting the Protein Interactions in COVID-19 Disease by Deep Learning.

Interdisciplinary sciences, computational life sciences
The new type of corona virus (SARS-COV-2) emerging in Wuhan, China has spread rapidly to the world and has become a pandemic. In addition to having a significant impact on daily life, it also shows its effect in different areas, including public heal...

Schizotypy in Parkinson's disease predicts dopamine-associated psychosis.

Scientific reports
Psychosis is the most common neuropsychiatric side-effect of dopaminergic therapy in Parkinson's disease (PD). It is still unknown which factors determine individual proneness to psychotic symptoms. Schizotypy is a multifaceted personality trait rela...