AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 1521 to 1530 of 2880 articles

Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Wheezing is a common symptom of patients caused by asthma and chronic obstructive pulmonary diseases. Wheezing detection identifies wheezing lung sounds and helps physicians in diagnosis, monitoring, and treatment of pulmona...

Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers.

Clinical neuroradiology
PURPOSE: To study the clinical potential of a deep learning neural network (convolutional neural networks [CNN]) as a supportive tool for detection of intracranial aneurysms from 3D time-of-flight magnetic resonance angiography (TOF-MRA) by comparing...

Feasibility of Natural Language Processing-Assisted Auditing of Critical Findings in Chest Radiology.

Journal of the American College of Radiology : JACR
OBJECTIVE: Time-sensitive communication of critical imaging findings like pneumothorax or pulmonary embolism to referring physicians is essential for patient safety. The definitive communication is the radiology free-text report. Quality assurance in...

Automated detection of third molars and mandibular nerve by deep learning.

Scientific reports
The approximity of the inferior alveolar nerve (IAN) to the roots of lower third molars (M3) is a risk factor for the occurrence of nerve damage and subsequent sensory disturbances of the lower lip and chin following the removal of third molars. To a...

Application of Deep Learning in Quantitative Analysis of 2-Dimensional Ultrasound Imaging of Nonalcoholic Fatty Liver Disease.

Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
OBJECTIVES: To verify the value of deep learning in diagnosing nonalcoholic fatty liver disease (NAFLD) by comparing 3 image-processing techniques.

Automatic identification of atherosclerosis subjects in a heterogeneous MR brain imaging data set.

Magnetic resonance imaging
Carotid-artery atherosclerosis (CA) contributes significantly to overall morbidity and mortality in ischemic stroke. We propose a machine learning technique to automatically identify subjects with CA from a heterogeneous cohort of magnetic resonance ...

Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis.

Journal of neuroradiology = Journal de neuroradiologie
PURPOSE: To assess whether a machine-learning model based on texture analysis (TA) could yield a more accurate diagnosis in differentiating malignant haemangiopericytoma (HPC) from angiomatous meningioma (AM).

Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms.

Radiology
Background Computational models on the basis of deep neural networks are increasingly used to analyze health care data. However, the efficacy of traditional computational models in radiology is a matter of debate. Purpose To evaluate the accuracy and...