AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 371 to 380 of 2873 articles

The Potential Clinical Utility of an Artificial Intelligence Model for Identification of Vertebral Compression Fractures in Chest Radiographs.

Journal of the American College of Radiology : JACR
PURPOSE: To assess the ability of the Annalise Enterprise CXR Triage Trauma (Annalise AI Pty Ltd, Sydney, NSW, Australia) artificial intelligence model to identify vertebral compression fractures on chest radiographs and its potential to address undi...

Deep Learning Model for Pathological Grading and Prognostic Assessment of Lung Cancer Using CT Imaging: A Study on NLST and External Validation Cohorts.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a deep learning model for automated pathological grading and prognostic assessment of lung cancer using CT imaging, thereby providing surgeons with a non-invasive tool to guide surgical planning.

The BCPM method: decoding breast cancer with machine learning.

BMC medical imaging
Breast cancer prediction and diagnosis are critical for timely and effective treatment, significantly impacting patient outcomes. Machine learning algorithms have become powerful tools for improving the prediction and diagnosis of breast cancer. The ...

Diagnostic accuracy of artificial intelligence-assisted caries detection: a clinical evaluation.

BMC oral health
OBJECTIVE: This clinical study aimed to evaluate the practical value of integrating an AI diagnostic model into clinical practice for caries detection using intraoral images.

Radiomics machine learning algorithm facilitates detection of small pancreatic neuroendocrine tumors on CT.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to develop a radiomics-based algorithm to identify small pancreatic neuroendocrine tumors (PanNETs) on CT and evaluate its robustness across manual and automated segmentations, exploring the feasibility of autom...

Predicting invasion in early-stage ground-glass opacity pulmonary adenocarcinoma: a radiomics-based machine learning approach.

BMC medical imaging
BACKGROUND: To design a pulmonary ground-glass nodules (GGN) classification method based on computed tomography (CT) radiomics and machine learning for prediction of invasion in early-stage ground-glass opacity (GGO) pulmonary adenocarcinoma.

Applying deep learning-based ensemble model to [F]-FDG-PET-radiomic features for differentiating benign from malignant parotid gland diseases.

Japanese journal of radiology
OBJECTIVES: To develop and identify machine learning (ML) models using pretreatment 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-based radiomic features to differentiate benign from malignant parotid gland diseases (PGDs...

A Machine Learning-Driven Surface-Enhanced Raman Scattering Analysis Platform for the Label-Free Detection and Identification of Gastric Lesions.

International journal of nanomedicine
BACKGROUND: Gastric lesions pose significant clinical challenges due to their varying degrees of malignancy and difficulty in early diagnosis. Early and accurate detection of these lesions is crucial for effective treatment and improved patient outco...

Artificial intelligence system for identification of overlooked lung metastasis in abdominopelvic computed tomography scans of patients with malignancy.

Diagnostic and interventional radiology (Ankara, Turkey)
PURPOSE: This study aimed to evaluate whether an artificial intelligence (AI) system can identify basal lung metastatic nodules examined using abdominopelvic computed tomography (CT) that were initially overlooked by radiologists.