AIMC Topic: Treatment Outcome

Clear Filters Showing 211 to 220 of 3204 articles

Development and evaluation of a deep learning segmentation model for assessing non-surgical endodontic treatment outcomes on periapical radiographs: A retrospective study.

PloS one
This study aimed to evaluate the performance of a deep learning-based segmentation model for predicting outcomes of non-surgical endodontic treatment. Preoperative and 3-year postoperative periapical radiographic images of each tooth from routine roo...

Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma.

Scientific reports
Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced melanoma, but is associated with potentially severe toxicity and high costs. Accurate biomarkers for response are lacking. The present work is the first to investigate the...

Multi-stain deep learning prediction model of treatment response in lupus nephritis based on renal histopathology.

Kidney international
The response of the kidney after induction treatment is one of the determinants of prognosis in lupus nephritis, but effective predictive tools are lacking. Here, we sought to apply deep learning approaches on kidney biopsies for treatment response p...

A novel way to use cross-validation to measure connectivity by machine learning allows epilepsy surgery outcome prediction.

NeuroImage
The rate of success of epilepsy surgery, ensuring seizure-freedom, is limited by the lack of epileptogenicity biomarkers. Previous evidence supports the critical role of functional connectivity during seizure generation to characterize the epileptoge...

Predicting lack of clinical improvement following varicose vein ablation using machine learning.

Journal of vascular surgery. Venous and lymphatic disorders
OBJECTIVE: Varicose vein ablation is generally indicated in patients with active/healed venous ulcers. However, patient selection for intervention in individuals without venous ulcers is less clear. Tools that predict lack of clinical improvement (LC...