AIMC Topic: Treatment Outcome

Clear Filters Showing 231 to 240 of 3204 articles

Using artificial intelligence to predict post-operative outcomes in congenital heart surgeries: a systematic review.

BMC cardiovascular disorders
INTRODUCTION: Congenital heart disease (CHD) represents the most common group of congenital anomalies, constitutes a significant contributor to the burden of non-communicable diseases, highlighting the critical need for improved risk assessment tools...

Predicting Early recurrence of atrial fibrilation post-catheter ablation using machine learning techniques.

BMC cardiovascular disorders
BACKGROUND: Catheter ablation is a common treatment for atrial fibrillation (AF), but recurrence rates remain variable. Predicting the success of catheter ablation is crucial for patient selection and management. This research seeks to create a machi...

Textbook outcome in liver surgery for intrahepatic cholangiocarcinoma: defining predictors of an optimal postoperative course using machine learning.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: We sought to define textbook outcome in liver surgery (TOLS) for intrahepatic cholangiocarcinoma (ICC) by considering the implications of perioperative outcomes on overall survival (OS).

Machine learning for predicting post-operative outcomes in meningiomas: a systematic review and meta-analysis.

Acta neurochirurgica
PURPOSE: Meningiomas are the most common primary brain tumour and account for over one-third of cases. Traditionally, estimations of morbidity and mortality following surgical resection have depended on subjective assessments of various factors, incl...

Artificial intelligence-assisted fitting method using corneal topography outcomes enhances success rate in orthokeratology lens fitting.

Contact lens & anterior eye : the journal of the British Contact Lens Association
PURPOSE: Based on ideal outcomes of corneal topography following orthokeratology (OK), an innovative machine learning algorithm for corneal refractive therapy (CRT) was developed to investigate the precision of artificial intelligence (AI)-assisted O...

A clinical practical model for preoperative prediction of visual outcome for pituitary adenoma patients in a retrospective and prospective study.

Frontiers in endocrinology
OBJECTIVE: Preoperative prediction of visual recovery after pituitary adenoma resection surgery remains challenging. This study aimed to investigate the value of clinical and radiological features in preoperatively predicting visual outcomes after su...

Does machine learning improve prediction accuracy of the Endoscopic Third Ventriculostomy Success Score? A contemporary Hydrocephalus Clinical Research Network cohort study.

Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery
PURPOSE: This Hydrocephalus Clinical Research Network (HCRN) study had two aims: (1) to compare the predictive performance of the original ETV Success Score (ETVSS) using logistic regression modeling with other newer machine learning models and (2) t...

Model-informed approach to estimate treatment effect in placebo-controlled clinical trials using an artificial intelligence-based propensity weighting methodology to account for non-specific responses to treatment.

Journal of pharmacokinetics and pharmacodynamics
In randomized, placebo controlled clinical trials (RCT) in major depressive disorders (MDD), treatment response (TR) is estimated by the change from baseline at study-end (EOS) of the scores of clinical scales used for assessing disease severity. Tre...

Utility of a Large Language Model for Extraction of Clinical Findings from Healthcare Data following Lung Ablation: A Feasibility Study.

Journal of vascular and interventional radiology : JVIR
To assess the feasibility of utilizing a large language model (LLM) in extracting clinically relevant information from healthcare data in patients who have undergone microwave ablation for lung tumors. In this single-center retrospective study, radio...