AI Medical Compendium Topic:
Adult

Clear Filters Showing 401 to 410 of 12463 articles

Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods.

Scientific reports
Early and accurate identification of patients at high risk of metabolic dysfunction-associated steatotic liver disease (MASLD) is critical to prevent and improve prognosis potentially. We aimed to develop and validate an explainable prediction model ...

Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction.

Scientific reports
Exposure to organochlorine pesticides (OCPs) poses significant health risks, including cancer, endocrine dysregulation, neurological disorders, and reproductive disruption. This study investigates the association between OCP exposure and thyroid dist...

Learning-based 3D human kinematics estimation using behavioral constraints from activity classification.

Nature communications
Inertial measurement units offer a cost-effective, portable alternative to lab-based motion capture systems. However, measuring joint angles and movement trajectories with inertial measurement units is challenging due to signal drift errors caused by...

Oxidative Stress Markers and Prediction of Severity With a Machine Learning Approach in Hospitalized Patients With COVID-19 and Severe Lung Disease: Observational, Retrospective, Single-Center Feasibility Study.

JMIR formative research
BACKGROUND: Serious pulmonary pathologies of infectious, viral, or bacterial origin are accompanied by inflammation and an increase in oxidative stress (OS). In these situations, biological measurements of OS are technically difficult to obtain, and ...

Clinical-level screening of sleep apnea syndrome with single-lead ECG alone is achievable using machine learning with appropriate time windows.

Sleep & breathing = Schlaf & Atmung
PURPOSE: To establish a simple and noninvasive screening test for sleep apnea (SA) that imposes less burden on potential patients. The specific objective of this study was to verify the effectiveness of past and future single-lead electrocardiogram (...

Detecting arousals and sleep from respiratory inductance plethysmography.

Sleep & breathing = Schlaf & Atmung
PURPOSE: Accurately identifying sleep states (REM, NREM, and Wake) and brief awakenings (arousals) is essential for diagnosing sleep disorders. Polysomnography (PSG) is the gold standard for such assessments but is costly and requires overnight monit...

Utilizing machine learning and geographic analysis to improve Post-crash traffic injury management and emergency response systems.

International journal of injury control and safety promotion
Traffic injuries are a major public health concern globally. This study uses machine learning (ML) and geographic analysis to analyse road traffic fatalities and improve traffic safety in Nakhon Ratchasima Province, Thailand. Data on road traffic fat...

Evaluation of Anthropometric Measurement Results and the Relationship Between Individual Identity and Geographic Belonging Through Artificial Neural Networks from a Mental Health Perspective.

Nigerian journal of clinical practice
BACKGROUND: Identity verification and geographical belonging are significant issues with mental health implications, particularly in forensic contexts. Anthropometric measurements offer potential insights into these relationships.

Machine learning-driven risk prediction and feature identification for major depressive disorder and its progression: an exploratory study based on five years of longitudinal data from the US national health survey.

Journal of affective disorders
BACKGROUND: Major depressive disorder (MDD) presents significant public health challenges due to its increasing prevalence and complex risk factors. This study systematically analyzed data from 2019 to 2023 to explore trends in MDD incidence, symptom...