AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Aged, 80 and over

Showing 151 to 160 of 3143 articles

Clear Filters

Real-World Insights Into Dementia Diagnosis Trajectory and Clinical Practice Patterns Unveiled by Natural Language Processing: Development and Usability Study.

JMIR aging
BACKGROUND: Understanding the dementia disease trajectory and clinical practice patterns in outpatient settings is vital for effective management. Knowledge about the path from initial memory loss complaints to dementia diagnosis remains limited.

Deep learning to quantify the pace of brain aging in relation to neurocognitive changes.

Proceedings of the National Academy of Sciences of the United States of America
Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since bi...

Cognitive performance classification of older patients using machine learning and electronic medical records.

Scientific reports
Dementia rates are projected to increase significantly by 2050, posing considerable challenges for healthcare systems worldwide. Developing efficient diagnostic tools is critical, and machine learning (ML) algorithms have shown potential for improvin...

Enhancing readmission prediction model in older stroke patients by integrating insight from readiness for hospital discharge: Prospective cohort study.

International journal of medical informatics
BACKGROUND: The 30-day hospital readmission rate is a key indicator of healthcare quality and system efficiency. This study aimed to develop machine-learning (ML) models to predict unplanned 30-day readmissions in older patients with ischemic stroke ...

Machine learning based on nutritional assessment to predict adverse events in older inpatients with possible sarcopenia.

Aging clinical and experimental research
BACKGROUND: The accuracy of current tools for predicting adverse events in older inpatients with possible sarcopenia is still insufficient to develop individualized nutrition-related management strategies. The objectives were to develop a machine lea...

Biophysical versus machine learning models for predicting rectal and skin temperatures in older adults.

Journal of thermal biology
This study compares the efficacy of machine learning models to traditional biophysical models in predicting rectal (T) and skin (T) temperatures of older adults (≥60 years) during prolonged heat exposure. Five machine learning models were trained on ...

Utilizing 12-lead electrocardiogram and machine learning to retrospectively estimate and prospectively predict atrial fibrillation and stroke risk.

Computers in biology and medicine
BACKGROUND: The stroke risk in patients with subclinical atrial fibrillation (AF) is underestimated. By identifying patients at high risk of embolic stroke, health-care professionals can make more informed decisions regarding anticoagulation treatmen...

An Integrative Machine Learning Model for Predicting Early Safety Outcomes in Patients Undergoing Transcatheter Aortic Valve Implantation.

Medicina (Kaunas, Lithuania)
: Early safety outcomes following transcatheter aortic valve implantation (TAVI) for severe aortic stenosis are critical for patient prognosis. Accurate prediction of adverse events can enhance patient management and improve outcomes. : This study ai...

New machine-learning models outperform conventional risk assessment tools in Gastrointestinal bleeding.

Scientific reports
Rapid and accurate identification of high-risk acute gastrointestinal bleeding (GIB) patients is essential. We developed two machine-learning (ML) models to calculate the risk of in-hospital mortality in patients admitted due to overt GIB. We analyze...