AIMC Topic: Aged

Clear Filters Showing 1991 to 2000 of 12887 articles

Glaucoma detection and staging from visual field images using machine learning techniques.

PloS one
PURPOSE: In this study, we investigated the performance of deep learning (DL) models to differentiate between normal and glaucomatous visual fields (VFs) and classify glaucoma from early to the advanced stage to observe if the DL model can stage glau...

Artificial intelligence applied in identifying left ventricular walls in myocardial perfusion scintigraphy images: Pilot study.

PloS one
This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of im...

Assessing donor kidney function: the role of CIRBP in predicting delayed graft function post-transplant.

Frontiers in immunology
INTRODUCTION: Delayed graft function (DGF) shortens the survival time of transplanted kidneys and increases the risk of rejection. Current methods are inadequate in predicting DGF. More precise tools are required to assess kidney suitability for tran...

The status of serum 25(OH)D levels is related to breast cancer.

Cancer treatment and research communications
AIM: Breast cancer is the second most common cancer among women and the leading cause of cancer-related mortality in this population. Numerous factors have been identified as either risk factors or protective factors for breast cancer. However, the r...

Predicting work ability impairment in post COVID-19 patients: a machine learning model based on clinical parameters.

Infection
The Post COVID-19 condition (PCC) is a complex disease affecting health and everyday functioning. This is well reflected by a patient's inability to work (ITW). In this study, we aimed to investigate factors associated with ITW (1) and to design a ma...

Diagnosing Epilepsy with Normal Interictal EEG Using Dynamic Network Models.

Annals of neurology
OBJECTIVE: Whereas a scalp electroencephalogram (EEG) is important for diagnosing epilepsy, a single routine EEG is limited in its diagnostic value. Only a small percentage of routine EEGs show interictal epileptiform discharges (IEDs) and overall mi...

Leveraging Deep Learning for Immune Cell Quantification and Prognostic Evaluation in Radiotherapy-Treated Oropharyngeal Squamous Cell Carcinomas.

Laboratory investigation; a journal of technical methods and pathology
The tumor microenvironment plays a critical role in cancer progression and therapeutic responsiveness, with the tumor immune microenvironment (TIME) being a key modulator. In head and neck squamous cell carcinomas (HNSCCs), immune cell infiltration s...

Can ChatGPT 4.0 Diagnose Acute Aortic Dissection? Integrating Artificial Intelligence into Medical Diagnostics.

The American journal of cardiology
Acute aortic dissection (AD) is a critical condition characterized by high mortality and frequent misdiagnoses, primarily due to symptom overlap with other medical pathologies. This study explores the diagnostic utility of ChatGPT 4.0, an artificial ...

Automatic machine learning accurately predicts the efficacy of immunotherapy for patients with inoperable advanced non-small cell lung cancer using a computed tomography-based radiomics model.

Diagnostic and interventional radiology (Ankara, Turkey)
PURPOSE: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individual...

Characterizing brain network alterations in cervical spondylotic myelopathy using static and dynamic functional network connectivity and machine learning.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
BACKGROUND: Cervical spondylotic myelopathy (CSM) is a debilitating condition that affects the cervical spine, leading to neurological impairments. While the neural mechanisms underlying CSM remain poorly understood, changes in brain network connecti...