AIMC Topic: Aged

Clear Filters Showing 2521 to 2530 of 12927 articles

Predicting axillary lymph node metastasis in breast cancer using a multimodal radiomics and deep learning model.

Frontiers in immunology
OBJECTIVE: To explore the value of combined radiomics and deep learning models using different machine learning algorithms based on mammography (MG) and magnetic resonance imaging (MRI) for predicting axillary lymph node metastasis (ALNM) in breast c...

A machine learning approach for identifying anatomical biomarkers of early mild cognitive impairment.

PeerJ
BACKGROUND: Alzheimer's Disease (AD) poses a major challenge as a neurodegenerative disorder, and early detection is critical for effective intervention. Magnetic resonance imaging (MRI) is a critical tool in AD research due to its availability and c...

Random survival forest model for early prediction of Alzheimer's disease conversion in early and late Mild cognitive impairment stages.

PloS one
With a clinical trial failure rate of 99.6% for Alzheimer's Disease (AD), early diagnosis is critical. Machine learning (ML) models have shown promising results in early AD prediction, with survival ML models outperforming typical classifiers by prov...

Prediction of mucinous adenocarcinoma in colorectal cancer with mucinous components detected in preoperative biopsy diagnosis.

Abdominal radiology (New York)
OBJECTIVES: Endoscopic biopsy diagnosis for the preoperative assessment of mucinous components in patients with colorectal cancer is limited. This study investigated a radiomics model and established an explainable prediction model by using machine l...

Performance of image processing analysis and a deep convolutional neural network for the classification of oral cancer in fluorescence visualization.

International journal of oral and maxillofacial surgery
The aim of this prospective study was to determine the effectiveness of screening using image processing analysis and a deep convolutional neural network (DCNN) to classify oral cancers using non-invasive fluorescence visualization. The study include...

Prospective Evaluation of Real-Time Artificial Intelligence for the Hill Classification of the Gastroesophageal Junction.

United European gastroenterology journal
BACKGROUND: Assessment of the gastroesophageal junction (GEJ) is an integral part of gastroscopy; however, the absence of standardized reporting hinders consistency of examination documentation. The Hill classification offers a standardized approach ...

Time-Frequency functional connectivity alterations in Alzheimer's disease and frontotemporal dementia: An EEG analysis using machine learning.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are prevalent neurodegenerative diseases characterized by altered brain functional connectivity (FC), affecting over 100 million people worldwide. This study aims to identify disti...

Blood Biomarker Signatures for Slow Gait Speed in Older Adults: An Explainable Machine Learning Approach.

Brain, behavior, and immunity
Maintaining physical function is crucial for independent living in older adults, with gait speed being a key predictor of health outcomes. Blood biomarkers may potentially monitor older adults' mobility, yet their association with slow gait speed sti...

Prediction of stroke-associated hospital-acquired pneumonia: Machine learning approach.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Stroke-associated Hospital Acquired Pneumonia (HAP) significantly impacts patient outcomes. This study explores the utility of machine learning models in predicting HAP in stroke patients, leveraging national registry data and SHapley Add...