AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 321 to 330 of 980 articles

Clear Filters

Machine learning developed a macrophage signature for predicting prognosis, immune infiltration and immunotherapy features in head and neck squamous cell carcinoma.

Scientific reports
Macrophages played an important role in the progression and treatment of head and neck squamous cell carcinoma (HNSCC). We employed weighted gene co-expression network analysis (WGCNA) to identify macrophage-related genes (MRGs) and classify patients...

is a novel marker for bladder cancer prognosis: evidence based on experimental studies, machine learning and single-cell sequencing.

Frontiers in immunology
BACKGROUND: Bladder cancer, a highly fatal disease, poses a significant threat to patients. Positioned at 19q13.2-13.3, LIG1, one of the four DNA ligases in mammalian cells, is frequently deleted in tumour cells of diverse origins. Despite this, the ...

Machine learning analysis of oxidative stress-related phenotypes for specific gene screening in ovarian cancer.

Environmental toxicology
BACKGROUND: Oxidative stress serves a crucial role in tumor development. However, the relationship between ovarian cancer and oxidative stress remains unknown. We aimed to create an oxidative stress-related prognostic signature to enhance the prognos...

Indirect reference interval estimation using a convolutional neural network with application to cancer antigen 125.

Scientific reports
Indirect methods for reference interval (RI) estimation, which use data acquired from routine pathology testing, have the potential to accelerate the establishment of RIs to account for variables such as gender and age to improve clinical assessments...

Integration of Bioinformatics and Machine Learning to Identify CD8+ T Cell-Related Prognostic Signature to Predict Clinical Outcomes and Treatment Response in Breast Cancer Patients.

Genes
UNLABELLED: The incidence of breast cancer (BC) continues to rise steadily, posing a significant burden on the public health systems of various countries worldwide. As a member of the tumor microenvironment (TME), CD8+ T cells inhibit cancer progress...

Weakly-supervised deep learning models enable HER2-low prediction from H &E stained slides.

Breast cancer research : BCR
BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-low breast cancer has emerged as a new subtype of tumor, for which novel antibody-drug conjugates have shown beneficial effects. Assessment of HER2 requires several immunohistochemistry test...

Machine learning-based identification of biomarkers and drugs in immunologically cold and hot pancreatic adenocarcinomas.

Journal of translational medicine
BACKGROUND: Pancreatic adenocarcinomas (PAADs) often exhibit a "cold" or immunosuppressive tumor milieu, which is associated with resistance to immune checkpoint blockade therapy; however, the underlying mechanisms are incompletely understood. Here, ...

Comprehensive Potential of Artificial Intelligence for Predicting PD-L1 Expression and EGFR Mutations in Lung Cancer: A Systematic Review and Meta-Analysis.

Journal of computer assisted tomography
OBJECTIVE: To evaluate the methodological quality and the predictive performance of artificial intelligence (AI) for predicting programmed death ligand 1 (PD-L1) expression and epidermal growth factor receptors (EGFR) mutations in lung cancer (LC) ba...

Utilizing machine learning to integrate single-cell and bulk RNA sequencing data for constructing and validating a novel cell adhesion molecules related prognostic model in gastric cancer.

Computers in biology and medicine
BACKGROUND: Cell adhesion molecules (CAMs) play a vital role in cell-cell interactions, immune response modulation, and tumor cell migration. However, the unique role of CAMs in gastric cancer (GC) remains largely unexplored.