AIMC Topic: Carcinoma, Hepatocellular

Clear Filters Showing 21 to 30 of 393 articles

Integrating single-cell RNA sequencing, WGCNA, and machine learning to identify key biomarkers in hepatocellular carcinoma.

Scientific reports
The microarray and single-cell RNA-sequencing (scRNA-seq) datasets of hepatocellular carcinoma (HCC) were downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (W...

Construction of an artificially intelligent model for accurate detection of HCC by integrating clinical, radiological, and peripheral immunological features.

International journal of surgery (London, England)
BACKGROUND: Integrating comprehensive information on hepatocellular carcinoma (HCC) is essential to improve its early detection. We aimed to develop a model with multimodal features (MMF) using artificial intelligence (AI) approaches to enhance the p...

Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC medical imaging
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...

A prediction model based on machine learning: prognosis of HBV-induced HCC male patients with smoking and drinking habits after local ablation treatment.

Frontiers in immunology
BACKGROUND: Liver cancer, particularly hepatocellular carcinoma (HCC), is a major health concern globally and in China, possibly shows recurrence after ablation treatment in high-risk patients. This study investigates the prognosis of early-stage mal...

Identification of CACNB1 protein as an actionable therapeutic target for hepatocellular carcinoma via metabolic dysfunction analysis in liver diseases: An integrated bioinformatics and machine learning approach for precise therapy.

International journal of biological macromolecules
In addition to histological evaluation for nonalcoholic fatty liver disease (NAFLD), a comprehensive analysis of the metabolic landscape is urgently needed to categorize patients into distinct subgroups for precise treatment. In this study, a total o...

Denoised recurrence label-based deep learning for prediction of postoperative recurrence risk and sorafenib response in HCC.

BMC medicine
BACKGROUND: Pathological images of hepatocellular carcinoma (HCC) contain abundant tumor information that can be used to stratify patients. However, the links between histology images and the treatment response have not been fully unveiled.

Deep learning based on intratumoral heterogeneity predicts histopathologic grade of hepatocellular carcinoma.

BMC cancer
OBJECTIVES: The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative prediction of his...

LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interp...