AIMC Topic: Carcinoma, Non-Small-Cell Lung

Clear Filters Showing 31 to 40 of 353 articles

Machine learning identifies clinical tumor mutation landscape pathways of resistance to checkpoint inhibitor therapy in NSCLC.

Journal for immunotherapy of cancer
BACKGROUND: Immune checkpoint inhibitors (CPIs) have revolutionized cancer therapy for several tumor indications. However, a substantial fraction of patients treated with CPIs derive no benefit or have short-lived responses to CPI therapy. Identifyin...

Comparative performance of PD-L1 scoring by pathologists and AI algorithms.

Histopathology
AIM: This study evaluates the comparative effectiveness of pathologists versus artificial intelligence (AI) algorithms in scoring PD-L1 expression in non-small cell lung carcinoma (NSCLC). Immune-checkpoint inhibitors have revolutionized NSCLC treatm...

Deep Learning Radiomics for Survival Prediction in Non-Small-Cell Lung Cancer Patients from CT Images.

Journal of medical systems
This study aims to apply a multi-modal approach of the deep learning method for survival prediction in patients with non-small-cell lung cancer (NSCLC) using CT-based radiomics. We utilized two public data sets from the Cancer Imaging Archive (TCIA) ...

Intricacies of human-AI interaction in dynamic decision-making for precision oncology.

Nature communications
AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals' cancer progression for effective personalized care. However, AI's imperfections can lead to suboptimal therapeutics...

Artificial intelligence for diagnosis and predictive biomarkers in Non-Small cell lung cancer Patients: New promises but also new hurdles for the pathologist.

Lung cancer (Amsterdam, Netherlands)
The rapid development of artificial intelligence (AI) based tools in pathology laboratories has brought forward unlimited opportunities for pathologists. Promising AI applications used for accomplishing diagnostic, prognostic and predictive tasks are...

Classification of NSCLC subtypes using lung microbiome from resected tissue based on machine learning methods.

NPJ systems biology and applications
Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learni...

Automatic machine learning accurately predicts the efficacy of immunotherapy for patients with inoperable advanced non-small cell lung cancer using a computed tomography-based radiomics model.

Diagnostic and interventional radiology (Ankara, Turkey)
PURPOSE: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individual...

SMR-guided molecular subtyping and machine learning model reveals novel prognostic biomarkers and therapeutic targets in non-small cell lung adenocarcinoma.

Scientific reports
Non-small cell lung adenocarcinoma (LUAD) is a markedly heterogeneous disease, with its underlying molecular mechanisms and prognosis prediction presenting ongoing challenges. In this study, we integrated data from multiple public datasets, including...

Cost-effectiveness of a machine learning risk prediction model (LungFlag) in the selection of high-risk individuals for non-small cell lung cancer screening in Spain.

Journal of medical economics
OBJECTIVE: The LungFlag risk prediction model uses individualized clinical variables to identify individuals at high-risk of non-small cell lung cancer (NSCLC) for screening with low-dose computed tomography (LDCT). This study evaluates the cost-effe...