AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Carcinoma, Non-Small-Cell Lung

Showing 41 to 50 of 329 articles

Clear Filters

Artificial neural network systems to predict the response to sintilimab in squamous-cell non-small-cell lung cancer based on data of ORIENT-3 study.

Cancer immunology, immunotherapy : CII
BACKGROUND: Existing biomarkers and models for predicting response to programmed cell death protein 1 monoclonal antibody in advanced squamous-cell non-small cell lung cancer (sqNSCLC) did not have enough accuracy. We used data from the ORIENT-3 stud...

Exploring tumor microenvironment interactions and apoptosis pathways in NSCLC through spatial transcriptomics and machine learning.

Cellular oncology (Dordrecht, Netherlands)
BACKGROUND: The most common type of lung cancer is non-small cell lung cancer (NSCLC), accounting for 85% of all cases. Programmed cell death (PCD), an important regulatory mechanism for cell survival and homeostasis, has become increasingly prominen...

Explainable Machine Learning Predictions for the Benefit From Chemotherapy in Advanced Non-Small Cell Lung Cancer Without Available Targeted Mutations.

The clinical respiratory journal
BACKGROUND: Non-small cell lung cancer (NSCLC) is a global health challenge. Chemotherapy remains the standard therapy for advanced NSCLC without mutations, but drug resistance often reduces effectiveness. Developing more effective methods to predict...

Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer.

JCO clinical cancer informatics
PURPOSE: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.

Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From F-FDG PET/CT Based on Interpretable Machine Learning.

Academic radiology
PURPOSE: This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC...

Comparative Analysis of Generative Pre-Trained Transformer Models in Oncogene-Driven Non-Small Cell Lung Cancer: Introducing the Generative Artificial Intelligence Performance Score.

JCO clinical cancer informatics
PURPOSE: Precision oncology in non-small cell lung cancer (NSCLC) relies on biomarker testing for clinical decision making. Despite its importance, challenges like the lack of genomic oncology training, nonstandardized biomarker reporting, and a rapi...

Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth.

Cell communication and signaling : CCS
BACKGROUND: Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selec...

Self-supervised learning improves robustness of deep learning lung tumor segmentation models to CT imaging differences.

Medical physics
BACKGROUND: Self-supervised learning (SSL) is an approach to extract useful feature representations from unlabeled data, and enable fine-tuning on downstream tasks with limited labeled examples. Self-pretraining is a SSL approach that uses curated do...

Cost-effectiveness of a machine learning risk prediction model (LungFlag) in the selection of high-risk individuals for non-small cell lung cancer screening in Spain.

Journal of medical economics
OBJECTIVE: The LungFlag risk prediction model uses individualized clinical variables to identify individuals at high-risk of non-small cell lung cancer (NSCLC) for screening with low-dose computed tomography (LDCT). This study evaluates the cost-effe...