BACKGROUND: Existing biomarkers and models for predicting response to programmed cell death protein 1 monoclonal antibody in advanced squamous-cell non-small cell lung cancer (sqNSCLC) did not have enough accuracy. We used data from the ORIENT-3 stud...
INTRODUCTION: The lung cancer continues to be the primary cause of cancer-related deaths, despite significant advancements in treatment through the introduction of immunological checkpoint inhibitors (ICI). These inhibitors, initially used as monothe...
BACKGROUND: The most common type of lung cancer is non-small cell lung cancer (NSCLC), accounting for 85% of all cases. Programmed cell death (PCD), an important regulatory mechanism for cell survival and homeostasis, has become increasingly prominen...
BACKGROUND: Non-small cell lung cancer (NSCLC) is a global health challenge. Chemotherapy remains the standard therapy for advanced NSCLC without mutations, but drug resistance often reduces effectiveness. Developing more effective methods to predict...
PURPOSE: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.
PURPOSE: This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC...
PURPOSE: Precision oncology in non-small cell lung cancer (NSCLC) relies on biomarker testing for clinical decision making. Despite its importance, challenges like the lack of genomic oncology training, nonstandardized biomarker reporting, and a rapi...
BACKGROUND: Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selec...
BACKGROUND: Self-supervised learning (SSL) is an approach to extract useful feature representations from unlabeled data, and enable fine-tuning on downstream tasks with limited labeled examples. Self-pretraining is a SSL approach that uses curated do...
OBJECTIVE: The LungFlag risk prediction model uses individualized clinical variables to identify individuals at high-risk of non-small cell lung cancer (NSCLC) for screening with low-dose computed tomography (LDCT). This study evaluates the cost-effe...