Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
40039079
Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an in...
Journal of neuroengineering and rehabilitation
40022168
BACKGROUND: Robot-assisted gait training (RAGT) is an effective method for treating gait disorders in individuals with stroke. However, no previous studies have demonstrated the effectiveness of RAGT in individuals with acute stroke. This study aimed...
BACKGROUND: The global prevalence of non-alcoholic steatohepatitis (NASH) and its associated risk of adverse outcomes, particularly in patients with advanced liver fibrosis, underscores the importance of early and accurate diagnosis.
BACKGROUND: Gastrointestinal bleeding is a serious adverse event of coronary artery bypass grafting and lacks tailored risk assessment tools for personalized prevention.
Alzheimer's & dementia : the journal of the Alzheimer's Association
40042448
INTRODUCTION: Cerebral amyloid angiopathy (CAA) is a cerebrovascular condition, the severity of which can only be determined post mortem. Here, we developed machine learning models, the Florey CAA Score (FCAAS), to predict CAA severity (none/mild/mod...
Scandinavian journal of trauma, resuscitation and emergency medicine
40033329
BACKGROUND: For preoxygenation, German guidelines consider non-invasive ventilation (NIV) as a possible method in prehospital trauma care in the absence of aspiration, severe head or face injuries, unconsciousness, or patient non-compliance. As data ...
OBJECTIVES: Develop an interpretable machine learning model to detect patients with newly diagnosed psoriatic arthritis (PsA) in a cohort of psoriasis patients and identify important clinical indicators of PsA in primary care.
European heart journal. Cardiovascular Imaging
40052574
AIMS: Understanding determinants of thoracic aortic morphology is crucial for precise diagnostics and therapeutic approaches. This study aimed to automatically characterize ascending aortic morphology based on 3D non-contrast-enhanced magnetic resona...