AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Diabetes Mellitus, Type 2

Showing 191 to 200 of 378 articles

Clear Filters

Host variables confound gut microbiota studies of human disease.

Nature
Low concordance between studies that examine the role of microbiota in human diseases is a pervasive challenge that limits the capacity to identify causal relationships between host-associated microorganisms and pathology. The risk of obtaining false...

Predicting Diabetic Neuropathy Risk Level Using Artificial Neural Network and Clinical Parameters of Subjects With Diabetes.

Journal of diabetes science and technology
BACKGROUND: A risk assessment tool has been developed for automated estimation of level of neuropathy based on the clinical characteristics of patients. The smart tool is based on risk factors for diabetic neuropathy, which utilizes vibration percept...

Machine Learning Approaches Reveal Metabolic Signatures of Incident Chronic Kidney Disease in Individuals With Prediabetes and Type 2 Diabetes.

Diabetes
Early and precise identification of individuals with prediabetes and type 2 diabetes (T2D) at risk for progressing to chronic kidney disease (CKD) is essential to prevent complications of diabetes. Here, we identify and evaluate prospective metabolit...

Identification of Potential Type II Diabetes in a Large-Scale Chinese Population Using a Systematic Machine Learning Framework.

Journal of diabetes research
BACKGROUND: An estimated 425 million people globally have diabetes, accounting for 12% of the world's health expenditures, and the number continues to grow, placing a huge burden on the healthcare system, especially in those remote, underserved areas...

Fuzzy partitioning of clinical data for DMT2 patients.

Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering
The present study represents an original approach to data interpretation of clinical data for patients with diagnosis diabetes mellitus type 2 (DMT2) using fuzzy clustering as a tool for intelligent data analysis. Fuzzy clustering is often used in cl...

Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation.

American journal of human genetics
Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes ris...

AI-based prediction for the risk of coronary heart disease among patients with type 2 diabetes mellitus.

Scientific reports
Type 2 diabetes mellitus (T2DM) is one common chronic disease caused by insulin secretion disorder that often leads to severe outcomes and even death due to complications, among which coronary heart disease (CHD) represents the most common and severe...

Artificial Intelligence (AI) based machine learning models predict glucose variability and hypoglycaemia risk in patients with type 2 diabetes on a multiple drug regimen who fast during ramadan (The PROFAST - IT Ramadan study).

Diabetes research and clinical practice
OBJECTIVE: To develop a machine-based algorithm from clinical and demographic data, physical activity and glucose variability to predict hyperglycaemic and hypoglycaemic excursions in patients with type 2 diabetes on multiple glucose lowering therapi...

Machine Learning Models to Predict Childhood and Adolescent Obesity: A Review.

Nutrients
The prevalence of childhood and adolescence overweight an obesity is raising at an alarming rate in many countries. This poses a serious threat to the current and near-future health systems, given the association of these conditions with different co...

Statistical inference for natural language processing algorithms with a demonstration using type 2 diabetes prediction from electronic health record notes.

Biometrics
The pointwise mutual information statistic (PMI), which measures how often two words occur together in a document corpus, is a cornerstone of recently proposed popular natural language processing algorithms such as word2vec. PMI and word2vec reveal s...