Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and v...
BACKGROUND: Technology can be an effective tool for providing health services and disease self-management, especially in diabetes care. Technology tools for disease self-management include health-related applications for computers and smartphones as ...
OBJECTIVES: This study aimed to identify risk factors for diabetic retinopathy (DR) and develop machine learning (ML)-based predictive models using routine laboratory data in patients with type 2 diabetes mellitus (T2DM).
BACKGROUND: Surrogate insulin resistance (IR) indices are simpler and more practical alternatives to insulin-based IR indicators for clinical use. This study explored the association between surrogate IR indices, including triglyceride-glucose index ...
In recent years, diabetes has become a global public health problem, and it is reported that the migrant Indians have more prevalence rate of Type-II diabetes. Also, the type-II diabetes in Indians are increased to a large extent due to modern lifest...
: Diet plays an important role in preventing and managing the progression from prediabetes to type 2 diabetes mellitus (T2DM). This study aims to develop prediction models incorporating specific dietary indicators and explore the performance in T2DM ...
Diabetic kidney disease (DKD) is a serious healthcare dilemma. Nonetheless, the interplay between the functional capacity of gut microbiota and their host remains elusive for DKD. This study aims to elucidate the functional capability of gut microbio...
BMC medical informatics and decision making
Mar 6, 2025
INTRODUCTION: Cellular Communication Network Factor 6 (CCN6) is an adipokine whose production undergoes significant alterations in metabolic disorders. Given the well-established link between obesity-induced adipokine dysfunction and the development ...
Effect heterogeneity analyses using causal machine learning algorithms have gained popularity in recent years. However, the interpretation of estimated individualized effects requires caution because insights from these data-driven approaches might b...
BACKGROUND: Machine learning (ML) models are being increasingly employed to predict the risk of developing and progressing diabetic kidney disease (DKD) in patients with type 2 diabetes mellitus (T2DM). However, the performance of these models still ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.