MOTIVATION: Machine learning (ML)-based stroke risk stratification systems have typically focused on conventional risk factors (CRF) (AtheroRisk-conventional). Besides CRF, carotid ultrasound image phenotypes (CUSIP) have shown to be powerful phenoty...
PURPOSE: Retinal screening examinations can prevent vision loss resulting from diabetes but are costly and highly underused. We hypothesized that artificial intelligence-assisted nonmydriatic point-of-care screening administered during primary care v...
Diabetes/metabolism research and reviews
Jun 14, 2020
This study was designed to improve blood glucose level predictability and future hypoglycemic and hyperglycemic event alerts through a novel patient-specific supervised-machine-learning (SML) analysis of glucose level based on a continuous-glucose-mo...
In a machine learning setting, this study aims to compare the prognostic utility of connectomic, brain structural, and clinical/demographic predictors of individual change in symptom severity in individuals with schizophrenia. Symptom severity at bas...
BACKGROUND: For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and va...
BACKGROUND: Patient follow-up is an essential part of hospital ward management. With the development of deep learning algorithms, individual follow-up assignments might be completed by artificial intelligence (AI). We developed an AI-assisted follow-...
BACKGROUND: Venoarterial (VA) extracorporeal membrane oxygenation (ECMO) undoubtedly saves many lives, but it is associated with a high degree of patient morbidity, mortality, and resource use. This study aimed to develop a machine learning algorithm...
To identify the most important factors that impact brain volume, while accounting for potential collinearity, we used a data-driven machine-learning approach. Gray Matter Volume (GMV) was derived from magnetic resonance imaging (3T, FLAIR) and adjust...
Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performan...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.