AIMC Topic: Gene Expression Regulation, Neoplastic

Clear Filters Showing 51 to 60 of 577 articles

Identification of M1 macrophage infiltration-related genes for immunotherapy in Her2-positive breast cancer based on bioinformatics analysis and machine learning.

Scientific reports
Over the past several decades, there has been a significant increase in the number of breast cancer patients. Among the four subtypes of breast cancer, Her2-positive breast cancer is one of the most aggressive breast cancers. In this study, we screen...

Integrative Multi-Omics Analysis Reveals Molecular Subtypes of Ovarian Cancer and Constructs Prognostic Models.

Journal of immunotherapy (Hagerstown, Md. : 1997)
Ovarian cancer (OV) remains the most lethal gynecological malignancy. The aim of this study was to identify molecular subtypes of OV through integrative multi-omics analysis and construct machine learning-based prognostic models for predicting the ef...

Integration of graph neural networks and transcriptomics analysis identify key pathways and gene signature for immunotherapy response and prognosis of skin melanoma.

BMC cancer
OBJECTIVE: The assessment of immunotherapy plays a pivotal role in the clinical management of skin melanoma. Graph neural networks (GNNs), alongside other deep learning algorithms and bioinformatics approaches, have demonstrated substantial promise i...

Combining multi-omics analysis with machine learning to uncover novel molecular subtypes, prognostic markers, and insights into immunotherapy for melanoma.

BMC cancer
BACKGROUND: Melanoma (SKCM) is an extremely aggressive form of cancer, characterized by high mortality rates, frequent metastasis, and limited treatment options. Our study aims to identify key target genes and enhance the diagnostic accuracy of melan...

Machine learning-based in-silico analysis identifies signatures of lysyl oxidases for prognostic and therapeutic response prediction in cancer.

Cell communication and signaling : CCS
BACKGROUND: Lysyl oxidases (LOX/LOXL1-4) are crucial for cancer progression, yet their transcriptional regulation, potential therapeutic targeting, prognostic value and involvement in immune regulation remain poorly understood. This study comprehensi...

Identification of thyroid cancer biomarkers using WGCNA and machine learning.

European journal of medical research
OBJECTIVE: The incidence of thyroid cancer (TC) is increasing in China, largely due to overdiagnosis from widespread screening and improved ultrasound technology. Identifying precise TC biomarkers is crucial for accurate diagnosis and effective treat...

Identification and validation of HOXC6 as a diagnostic biomarker for Ewing sarcoma: insights from machine learning algorithms and experiments.

Frontiers in immunology
INTRODUCTION: Early diagnosis of Ewing sarcoma (ES) is critical for improving patient prognosis. However, the accurate diagnosis of ES remains challenging, underscoring the need for novel diagnostic biomarkers to enhance diagnostic precision and reli...

Mitigating ambient RNA and doublets effects on single cell transcriptomics analysis in cancer research.

Cancer letters
In cancer biology, where understanding the tumor microenvironment at high resolution is vital, ambient RNA contamination becomes a considerable problem. This hinders accurate delineation of intratumoral heterogeneity, complicates the identification o...

Development and validation of machine learning models for early diagnosis and prognosis of lung adenocarcinoma using miRNA expression profiles.

Cancer biomarkers : section A of Disease markers
ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients...