AIMC Topic:
Image Interpretation, Computer-Assisted

Clear Filters Showing 1271 to 1280 of 2720 articles

UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification.

IEEE journal of biomedical and health informatics
Deep learning has achieved remarkable success in the optical coherence tomography (OCT) image classification task with substantial labelled B-scan images available. However, obtaining such fine-grained expert annotations is usually quite difficult an...

A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi.

Journal of dermatological science
BACKGROUND: Timely recognition of malignant melanoma (MM) is challenging for dermatologists worldwide and represents the main determinant for mortality. Dermoscopic examination is influenced by dermatologists' experience and fails to achieve adequate...

DACH: Domain Adaptation Without Domain Information.

IEEE transactions on neural networks and learning systems
Domain adaptation is becoming increasingly important for learning systems in recent years, especially with the growing diversification of data domains in real-world applications, such as the genetic data from various sequencing platforms and video fe...

Fully‑automated deep‑learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: For the growing patient population with congenital heart disease (CHD), improving clinical workflow, accuracy of diagnosis, and efficiency of analyses are considered unmet clinical needs. Cardiovascular magnetic resonance (CMR) imaging of...

Estimating Local Cellular Density in Glioma Using MR Imaging Data.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: Increased cellular density is a hallmark of gliomas, both in the bulk of the tumor and in areas of tumor infiltration into surrounding brain. Altered cellular density causes altered imaging findings, but the degree to which ce...

A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals.

Nature communications
Diagnostic histopathology is a gold standard for diagnosing hematopoietic malignancies. Pathologic diagnosis requires labor-intensive reading of a large number of tissue slides with high diagnostic accuracy equal or close to 100 percent to guide trea...

Training confounder-free deep learning models for medical applications.

Nature communications
The presence of confounding effects (or biases) is one of the most critical challenges in using deep learning to advance discovery in medical imaging studies. Confounders affect the relationship between input data (e.g., brain MRIs) and output variab...

A Single-Shot Region-Adaptive Network for Myotendinous Junction Segmentation in Muscular Ultrasound Images.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Tracking the myotendinous junction (MTJ) in consecutive ultrasound images is crucial for understanding the mechanics and pathological conditions of the muscle-tendon unit. However, the lack of reliable and efficient identification of MTJ due to poor ...

Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Knee arthroscopy is a complex minimally invasive surgery that can cause unintended injuries to femoral cartilage or postoperative complications, or both. Autonomous robotic systems using real-time volumetric ultrasound (US) imaging guidance hold pote...