AIMC Topic: Lymphocytes, Tumor-Infiltrating

Clear Filters Showing 11 to 20 of 63 articles

Automated deep learning-based assessment of tumour-infiltrating lymphocyte density determines prognosis in colorectal cancer.

Journal of translational medicine
BACKGROUND: The presence of tumour-infiltrating lymphocytes (TILs) is a well-established prognostic biomarker across multiple cancer types, with higher TIL counts being associated with lower recurrence rates and improved patient survival. We aimed to...

Development of a tertiary lymphoid structure-based prognostic model for breast cancer: integrating single-cell sequencing and machine learning to enhance patient outcomes.

Frontiers in immunology
BACKGROUND: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment ...

Artificial intelligence-based spatial analysis of tertiary lymphoid structures and clinical significance for endometrial cancer.

Cancer immunology, immunotherapy : CII
With the incorporation of immune checkpoint inhibitors into the treatment of endometrial cancer (EC), a deeper understanding of the tumor immune microenvironment is critical. Tertiary lymphoid structures (TLSs) are considered favorable prognostic fac...

Classifying tumour infiltrating lymphocytes in oral squamous cell carcinoma histopathology using joint learning framework.

Scientific reports
Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC gr...

The global trends and distribution in tumor-infiltrating lymphocytes over the past 49 years: bibliometric and visualized analysis.

Frontiers in immunology
BACKGROUND: The body of research on tumor-infiltrating lymphocytes (TILs) is expanding rapidly; yet, a comprehensive analysis of related publications has been notably absent.

High density of TCF1+ stem-like tumor-infiltrating lymphocytes is associated with favorable disease-specific survival in NSCLC.

Frontiers in immunology
INTRODUCTION: Tumor-infiltrating lymphocytes are both prognostic and predictive biomarkers for immunotherapy response. However, less is known about the survival benefits oftheir subpopulations.

Machine learning-driven estimation of mutational burden highlights DNAH5 as a prognostic marker in colorectal cancer.

Biology direct
BACKGROUND: Tumor Mutational Burden (TMB) have emerged as pivotal predictive biomarkers in determining prognosis and response to immunotherapy in colorectal cancer (CRC) patients. While Whole Exome Sequencing (WES) stands as the gold standard for TMB...

Development and validation of machine learning models for diagnosis and prognosis of lung adenocarcinoma, and immune infiltration analysis.

Scientific reports
The aim of our study was to develop robust diagnostic and prognostic models for lung adenocarcinoma (LUAD) using machine learning (ML) techniques, focusing on early immune infiltration. Feature selection was performed on The Cancer Genome Atlas (TCGA...