AIMC Topic: Mice

Clear Filters Showing 131 to 140 of 1493 articles

Predicting inflammatory response of biomimetic nanofibre scaffolds for tissue regeneration using machine learning and graph theory.

Journal of materials chemistry. B
Tissue regeneration after a wound occurs through three main overlapping and interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The inflammatory phase is key for successful tissue reconstruction and triggers ...

An antibody developability triaging pipeline exploiting protein language models.

mAbs
Therapeutic monoclonal antibodies (mAbs) are a successful class of biologic drugs that are frequently selected from phage display libraries and transgenic mice that produce fully human antibodies. However, binding affinity to the correct epitope is n...

Logic-based machine learning predicts how escitalopram attenuates cardiomyocyte hypertrophy.

Proceedings of the National Academy of Sciences of the United States of America
Cardiomyocyte hypertrophy is a key clinical predictor of heart failure. High-throughput and AI-driven screens have the potential to identify drugs and downstream pathways that modulate cardiomyocyte hypertrophy. Here, we developed LogiRx, a logic-bas...

Machine learning-assisted design of immunomodulatory lipid nanoparticles for delivery of mRNA to repolarize hyperactivated microglia.

Drug delivery
Regulating inflammatory microglia presents a promising strategy for treating neurodegenerative and autoimmune disorders, yet effective therapeutic agents delivery to these cells remains a challenge. This study investigates modified lipid nanoparticle...

SeizyML: An Application for Semi-Automated Seizure Detection Using Interpretable Machine Learning Models.

Neuroinformatics
Despite the vast number of publications reporting seizures and the reliance of the field on accurate seizure detection, there is a lack of open-source software tools in the scientific community for automating seizure detection based on electrographic...

A deep learning strategy to identify cell types across species from high-density extracellular recordings.

Cell
High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals an...

Artificial intelligence-enabled lipid droplets quantification: Comparative analysis of NIS-elements Segment.ai and ZeroCostDL4Mic StarDist networks.

Methods (San Diego, Calif.)
Lipid droplets (LDs) are dynamic organelles that are present in almost all cell types, with a particularly high prevalence in adipocytes. The phenotype of LDs in these cells reflects their maturity, metabolic activity and function. Although LDs quant...

Living Microalgae-Based Magnetic Microrobots for Calcium Overload and Photodynamic Synergetic Cancer Therapy.

Advanced healthcare materials
The combination of Ca overload and reactive oxygen species (ROS) production for cancer therapy offers a superior solution to the lack of specificity in traditional antitumor strategies. However, current therapeutic platforms for this strategy are pri...

Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage.

Cell genomics
Deep learning models have advanced our ability to predict cell-type-specific chromatin patterns from transcription factor (TF) binding motifs, but their application to perturbed contexts remains limited. We applied transfer learning to predict how co...

Supervised and unsupervised deep learning-based approaches for studying DNA replication spatiotemporal dynamics.

Communications biology
In eukaryotic cells, DNA replication is organised both spatially and temporally, as evidenced by the stage-specific spatial distribution of replication foci in the nucleus. Despite the genetic association of aberrant DNA replication with numerous hum...