OBJECTIVE: To investigate the value of multiparametric magnetic resonance imaging (MRI) as a non-invasive method to predict the aggressiveness of renal cell carcinoma (RCC) by developing a convolutional neural network (CNN) model and fusing it with c...
RATIONALE AND OBJECTIVES: To comprehensively assess the feasibility of low-dose computed tomography (LDCT) using deep learning image reconstruction (DLIR) for evaluating pulmonary subsolid nodules, which are challenging due to their susceptibility to...
International journal of stroke : official journal of the International Stroke Society
Dec 13, 2024
BACKGROUND: The recurrence rate of strokes associated with atrial fibrillation (AF) can be substantially reduced through the administration of oral anticoagulants. However, previous studies have not demonstrated a clear benefit from the universal app...
Computer methods and programs in biomedicine
Dec 13, 2024
BACKGROUND AND OBJECTIVE: Accurate prediction of perioperative major adverse cardiovascular events (MACEs) is crucial, as it not only aids clinicians in comprehensively assessing patients' surgical risks and tailoring personalized surgical and periop...
Laboratory investigation; a journal of technical methods and pathology
Dec 13, 2024
Interstitial lung disease (ILD), characterized by inflammation and fibrosis, often suffers from low diagnostic accuracy and consistency. Traditional hematoxylin and eosin (H&E) staining primarily reveals cellular inflammation with limited detail on f...
BACKGROUND: Predicting in-hospital cardiac arrest (IHCA) is crucial for potentially reducing mortality and improving patient outcomes. However, most models, which rely solely on vital signs, may not comprehensively capture the patients' risk profiles...
OBJECTIVE: This study aimed to develop a prediction tool to identify abdominal aortic aneurysms (AAAs) at increased risk of rupture incorporating demographic, clinical, imaging, and medication data using artificial intelligence (AI).
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
Dec 13, 2024
OBJECTIVE: The purpose of this study was to evaluate the effectiveness of a deep learning model (DLM) in improving the sensitivity of neurosurgery residents to detect intracranial aneurysms on CT angiography (CTA) in patients with aneurysmal subarach...
BACKGROUND: Novel circulating markers for the non-invasive staging of chronic liver disease (CLD) are in high demand. Although underutilized, extracellular matrix (ECM) components offer significant diagnostic potential. This study evaluates ECM-relat...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.