AIMC Topic: Mutation

Clear Filters Showing 41 to 50 of 636 articles

Ontology-driven identification of inconsistencies in clinical data: A case study in lung cancer phenotyping.

Journal of biomedical informatics
OBJECTIVE: To illustrate the use of an ontology in evaluating data quality in the medical field, focusing on phenotyping lung cancers.

A fusion model to predict the survival of colorectal cancer based on histopathological image and gene mutation.

Scientific reports
Colorectal cancer (CRC) is a prevalent gastrointestinal tumor worldwide with high morbidity and mortality. Predicting the survival of CRC patients not only enhances understanding of their life expectancies but also aids clinicians in making informed ...

Histopathology based AI model predicts anti-angiogenic therapy response in renal cancer clinical trial.

Nature communications
Anti-angiogenic (AA) therapy is a cornerstone of metastatic clear cell renal cell carcinoma (ccRCC) treatment, but not everyone responds, and predictive biomarkers are lacking. CD31, a marker of vasculature, is insufficient, and the Angioscore, an RN...

A multimodal framework for assessing the link between pathomics, transcriptomics, and pancreatic cancer mutations.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
In Pancreatic Ductal Adenocarcinoma (PDAC), predicting genetic mutations directly from histopathological images using Deep Learning can provide valuable insights. The combination of several omics can provide further knowledge on mechanisms underlying...

Deep learning prioritizes cancer mutations that alter protein nucleocytoplasmic shuttling to drive tumorigenesis.

Nature communications
Genetic variants can affect protein function by driving aberrant subcellular localization. However, comprehensive analysis of how mutations promote tumor progression by influencing nuclear localization is currently lacking. Here, we systematically ch...

Deep learning radiomics for the prediction of epidermal growth factor receptor mutation status based on MRI in brain metastasis from lung adenocarcinoma patients.

BMC cancer
BACKGROUND: Early and accurate identification of epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases is critical for guiding targeted therapy. This study aimed to develop a deep...

Biochemical Characterization of Disease-Associated Variants of Human Ornithine Transcarbamylase.

ACS chemical biology
Human ornithine transcarbamylase deficiency (OTCD) is the most common ureagenesis disorder in the world. OTCD is an X-linked genetic deficiency in which patients experience hyperammonemia to varying degrees depending on the severity of the genetic mu...

Identification of Novel Fourth-Generation Allosteric Inhibitors Targeting Inactive State of EGFR T790M/L858R/C797S and T790M/L858R Mutations: A Combined Machine Learning and Molecular Dynamics Approach.

The journal of physical chemistry. B
Targeted therapy with an allosteric inhibitor (AIs) is an important area of research in patients with epidermal growth factor receptor (EGFR) mutations. Current treatment of nonsmall cell lung cancer patients with EGFR mutations using orthosteric inh...

Deep mutational learning for the selection of therapeutic antibodies resistant to the evolution of Omicron variants of SARS-CoV-2.

Nature biomedical engineering
Most antibodies for treating COVID-19 rely on binding the receptor-binding domain (RBD) of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). However, Omicron and its sub-lineages, as well as other heavily mutated variants, have rendered m...