AIMC Topic: Mutation

Clear Filters Showing 591 to 600 of 653 articles

Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid leukemia.

Blood
Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), traditional classifications are largely based on morphology, and prototypic genetic founder lesions define only a small proportion of AML patients. The historical su...

Improving feature selection performance for classification of gene expression data using Harris Hawks optimizer with variable neighborhood learning.

Briefings in bioinformatics
Gene expression profiling has played a significant role in the identification and classification of tumor molecules. In gene expression data, only a few feature genes are closely related to tumors. It is a challenging task to select highly discrimina...

Deep embedded clustering with multiple objectives on scRNA-seq data.

Briefings in bioinformatics
In recent years, single-cell RNA sequencing (scRNA-seq) technologies have been widely adopted to interrogate gene expression of individual cells; it brings opportunities to understand the underlying processes in a high-throughput manner. Deep embedde...

Machine learning application for patient stratification and phenotype/genotype investigation in a rare disease.

Briefings in bioinformatics
Alkaptonuria (AKU, OMIM: 203500) is an autosomal recessive disorder caused by mutations in the Homogentisate 1,2-dioxygenase (HGD) gene. A lack of standardized data, information and methodologies to assess disease severity and progression represents ...

Radiogenomic and Deep Learning Network Approaches to Predict Mutation from Radiotherapy Plan CT.

Anticancer research
BACKGROUND/AIM: We aimed to investigate the role of radiogenomic and deep learning approaches in predicting the KRAS mutation status of a tumor using radiotherapy planning computed tomography (CT) images in patients with locally advanced rectal cance...

DeepSSV: detecting somatic small variants in paired tumor and normal sequencing data with convolutional neural network.

Briefings in bioinformatics
It is of considerable interest to detect somatic mutations in paired tumor and normal sequencing data. A number of callers that are based on statistical or machine learning approaches have been developed to detect somatic small variants. However, the...

Identification of pan-cancer Ras pathway activation with deep learning.

Briefings in bioinformatics
The identification of hidden responders is often an essential challenge in precision oncology. A recent attempt based on machine learning has been proposed for classifying aberrant pathway activity from multiomic cancer data. However, we note several...

Deep representation learning improves prediction of LacI-mediated transcriptional repression.

Proceedings of the National Academy of Sciences of the United States of America
Recent progress in DNA synthesis and sequencing technology has enabled systematic studies of protein function at a massive scale. We explore a deep mutational scanning study that measured the transcriptional repression function of 43,669 variants of ...

A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data.

Zoological research
Somatic mutations are a large category of genetic variations, which play an essential role in tumorigenesis. Detection of somatic single nucleotide variants (SNVs) could facilitate downstream analysis of tumorigenesis. Many computational methods have...