AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasm Metastasis

Showing 51 to 60 of 128 articles

Clear Filters

Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning.

PloS one
We define cell morphodynamics as the cell's time dependent morphology. It could be called the cell's shape shifting ability. To measure it we use a biomarker free, dynamic histology method, which is based on multiplexed Cell Magneto-Rotation and Mach...

Dynamic Learning Rate in Deep CNN Model for Metastasis Detection and Classification of Histopathology Images.

Computational and mathematical methods in medicine
Diagnosis of different breast cancer stages using histopathology whole slide images (WSI) is the gold standard in determining the grade of tissue metastasis. Computer-aided diagnosis (CAD) assists medical experts as a second opinion tool in early det...

A new prognostic score for predicting survival in patients treated with robotic stereotactic radiotherapy for brain metastases.

Scientific reports
The study aimed to analyze potential prognostic factors in patients treated with robotic radiosurgery for brain metastases irrespective of primary tumor location and create a simple prognostic score that can be used without a full diagnostic workup. ...

Can 3D artificial intelligence models outshine 2D ones in the detection of intracranial metastatic tumors on magnetic resonance images?

Journal of the Chinese Medical Association : JCMA
BACKGROUND: This study aimed to compare the prediction performance of two-dimensional (2D) and three-dimensional (3D) semantic segmentation models for intracranial metastatic tumors with a volume ≥ 0.3 mL.

Deep Learning for Clinical Image Analyses in Oral Squamous Cell Carcinoma: A Review.

JAMA otolaryngology-- head & neck surgery
IMPORTANCE: Oral squamous cell carcinoma (SCC) is a lethal malignant neoplasm with a high rate of tumor metastasis and recurrence. Accurate diagnosis, prognosis prediction, and metastasis detection can improve patient outcomes. Deep learning for clin...

Machine learning of genomic features in organotropic metastases stratifies progression risk of primary tumors.

Nature communications
Metastatic cancer is associated with poor patient prognosis but its spatiotemporal behavior remains unpredictable at early stage. Here we develop MetaNet, a computational framework that integrates clinical and sequencing data from 32,176 primary and ...

DiaDeL: An Accurate Deep Learning-Based Model With Mutational Signatures for Predicting Metastasis Stage and Cancer Types.

IEEE/ACM transactions on computational biology and bioinformatics
Mutational signatures help identify cancer-associated genes that are being involved in tumorigenesis pathways. Hence, these pathways guide precision medicine approaches to find appropriate drugs and treatments. The pattern of mutations varies in diff...

Machine learning based on SEER database to predict distant metastasis of thyroid cancer.

Endocrine
OBJECTIVE: Distant metastasis of thyroid cancer often indicates poor prognosis, and it is important to identify patients who have developed distant metastasis or are at high risk as early as possible. This paper aimed to predict distant metastasis of...

Machine learning application identifies plasma markers for proteinuria in metastatic colorectal cancer patients treated with Bevacizumab.

Cancer chemotherapy and pharmacology
BACKGROUND AND OBJECTIVES: Proteinuria is a common complication after the application of bevacizumab therapy in patients with metastatic colorectal cancer, and severe proteinuria can lead to discontinuation of the drug. There is a lack of sophisticat...