AIMC Topic: Nomograms

Clear Filters Showing 181 to 190 of 375 articles

Identification of Prolactinoma in Pituitary Neuroendocrine Tumors Using Radiomics Analysis Based on Multiparameter MRI.

Journal of imaging informatics in medicine
This study aims to investigate the feasibility of preoperatively predicting histological subtypes of pituitary neuroendocrine tumors (PitNETs) using machine learning and radiomics based on multiparameter MRI. Patients with PitNETs from January 2016 t...

Machine learning-based model for predicting tumor recurrence after interventional therapy in HBV-related hepatocellular carcinoma patients with low preoperative platelet-albumin-bilirubin score.

Frontiers in immunology
INTRODUCTION: This study aimed to develop a prognostic nomogram for predicting the recurrence-free survival (RFS) of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients with low preoperative platelet-albumin-bilirubin (PALBI) scor...

Deep learning nomogram for predicting neoadjuvant chemotherapy response in locally advanced gastric cancer patients.

Abdominal radiology (New York)
PURPOSE: Developed and validated a deep learning radiomics nomogram using multi-phase contrast-enhanced computed tomography (CECT) images to predict neoadjuvant chemotherapy (NAC) response in locally advanced gastric cancer (LAGC) patients.

Combined radiomics nomogram of different machine learning models for preoperative distinguishing intraspinal schwannomas and meningiomas: a multicenter and comparative study.

Clinical radiology
AIMS: The objective of our study was to establish and verify a novel combined model based on multiparameter magnetic resonance imaging (MRI) radiomics and clinical features to distinguish intraspinal schwannomas from meningiomas.

Prognostic model incorporating immune checkpoint genes to predict the immunotherapy efficacy for lung adenocarcinoma: a cohort study integrating machine learning algorithms.

Immunologic research
This study aimed to develop and validate a nomogram based on immune checkpoint genes (ICGs) for predicting prognosis and immune checkpoint blockade (ICB) efficacy in lung adenocarcinoma (LUAD) patients. A total of 385 LUAD patients from the TCGA data...

Identification of patients with internet gaming disorder via a radiomics-based machine learning model of subcortical structures in high-resolution T1-weighted MRI.

Progress in neuro-psychopharmacology & biological psychiatry
It is of vital importance to establish an objective and reliable model to facilitate the early diagnosis and intervention of internet gaming disorder (IGD). A total of 133 patients with IGD and 110 healthy controls (HCs) were included. We extracted r...

Machine learning to predict the occurrence of thyroid nodules: towards a quantitative approach for judicious utilization of thyroid ultrasonography.

Frontiers in endocrinology
INTRODUCTION: Ultrasound is instrumental in the early detection of thyroid nodules, which is crucial for appropriate management and favorable outcomes. However, there is a lack of clinical guidelines for the judicious use of thyroid ultrasonography i...

Development and Validation of a Novel Machine Learning Model to Predict the Survival of Patients with Gastrointestinal Neuroendocrine Neoplasms.

Neuroendocrinology
INTRODUCTION: Well-calibrated models for personalized prognostication of patients with gastrointestinal neuroendocrine neoplasms (GINENs) are limited. This study aimed to develop and validate a machine-learning model to predict the survival of patien...

Development of an immunoinflammatory indicator-related dynamic nomogram based on machine learning for the prediction of intravenous immunoglobulin-resistant Kawasaki disease patients.

International immunopharmacology
BACKGROUND: Approximately 10-20% of Kawasaki disease (KD) patients suffer from intravenous immunoglobulin (IVIG) resistance, placing them at higher risk of developing coronary artery aneurysms. Therefore, we aimed to construct an IVIG resistance pred...