AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nomograms

Showing 41 to 50 of 336 articles

Clear Filters

The role of CTGF and MFG-E8 in the prognosis assessment of SCAP: a study combining machine learning and nomogram analysis.

Frontiers in immunology
BACKGROUND: Severe Community-Acquired Pneumonia (SCAP) is a serious global health issue with high incidence and mortality rates. In recent years, the role of biomarkers such as Connective Tissue Growth Factor (CTGF) and Milk Fat Globule-Epidermal Gro...

Integrating ultrasound radiomics and clinicopathological features for machine learning-based survival prediction in patients with nonmetastatic triple-negative breast cancer.

BMC cancer
OBJECTIVE: This study aimed to evaluate the predictive value of implementing machine learning models based on ultrasound radiomics and clinicopathological features in the survival analysis of triple-negative breast cancer (TNBC) patients.

Identification of benzo(a)pyrene-related toxicological targets and their role in chronic obstructive pulmonary disease pathogenesis: a comprehensive bioinformatics and machine learning approach.

BMC pharmacology & toxicology
BACKGROUND: Chronic obstructive pulmonary disease (COPD) pathogenesis is influenced by environmental factors, including Benzo(a)pyrene (BaP) exposure. This study aims to identify BaP-related toxicological targets and elucidate their roles in COPD dev...

Machine learning-based identification of co-expressed genes in prostate cancer and CRPC and construction of prognostic models.

Scientific reports
The objective of this study was to employ machine learning to identify shared differentially expressed genes (DEGs) in prostate cancer (PCa) initiation and castration resistance, aiming to establish a robust prognostic model and enhance understanding...

Machine learning-based bulk RNA analysis reveals a prognostic signature of 13 cell death patterns and potential therapeutic target of SMAD3 in acute myeloid leukemia.

BMC cancer
BACKGROUND: Dysregulation or abnormality of the programmed cell death (PCD) pathway is closely related to the occurrence and development of many tumors, including acute myeloid leukemia (AML). Studying the abnormal characteristics of PCD pathway-rela...

A diagnostic model for sepsis using an integrated machine learning framework approach and its therapeutic drug discovery.

BMC infectious diseases
BACKGROUND: Sepsis remains a life-threatening condition in intensive care units (ICU) with high morbidity and mortality rates. Some biomarkers commonly used in clinic do not have the characteristics of rapid and specific growth and rapid decline afte...

Developing a nomogram model for predicting non-obstructive azoospermia using machine learning techniques.

Scientific reports
Azoospermia, defined by the absence of sperm in the ejaculate, manifests as obstructive azoospermia (OA) or non-obstructive azoospermia (NOA). Reliable predictive models utilizing biomarkers could aid in clinical decision-making. This study included ...

Prediction of mortality risk in critically ill patients with systemic lupus erythematosus: a machine learning approach using the MIMIC-IV database.

Lupus science & medicine
OBJECTIVE: Early prediction of long-term outcomes in patients with systemic lupus erythematosus (SLE) remains a great challenge in clinical practice. Our study aims to develop and validate predictive models for the mortality risk.

Interpretable machine learning-derived nomogram model for early detection of persistent diarrhea in Salmonella typhimurium enteritis: a propensity score matching based case-control study.

BMC infectious diseases
BACKGROUND: Salmonella typhimurium infection is a considerable global health concern, particularly in children, where it often leads to persistent diarrhea. This condition can result in severe health complications including malnutrition and cognitive...

A Hybrid Machine Learning CT-Based Radiomics Nomogram for Predicting Cancer-Specific Survival in Curatively Resected Colorectal Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a computed tomography-based radiomics nomogram for cancer-specific survival (CSS) prediction in curatively resected colorectal cancer (CRC), and its performance was compared with the American Joint Co...