Subarachnoid hemorrhage (SAH) is a severe condition with high morbidity and long-term neurological consequences. Radiomics, by extracting quantitative features from Computed Tomograhpy (CT) scans, may reveal imaging biomarkers predictive of outcomes....
The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians
Jun 23, 2025
: Early identification and timely preventive interventions play an essential role for improving the prognosis of newborns with necrotizing enterocolitis (NEC). Thus, establishing a novel and simple prediction model is of great clinical significance. ...
BACKGROUND: Pathological complete response (pCR) to neoadjuvant systemic therapy (NAST) is an established prognostic marker in breast cancer (BC). Multimodal deep learning (DL), integrating diverse data sources (radiology, pathology, omics, clinical)...
OBJECTIVE: To develop and validate a machine learning framework combined with a nomogram for predicting recurrence after radical gastrectomy in patients with vascular and neural invasion.
BACKGROUND: Coronary angiography remains the gold standard for diagnosing coronary artery disease (CAD), but its invasive nature limits its applicability for widespread screening. Identifying non-invasive molecular markers could improve CAD classific...
BACKGROUND: Nasopharyngeal carcinoma (NPC) exhibits unique histopathological characteristics compared to other head and neck cancers. The prognosis of NPC patients after intensity-modulated radiation therapy (IMRT) has not been fully studied, and the...
PURPOSE: Artificial intelligence (AI) tools that identify pathologic features from digitized whole-slide images (WSIs) of prostate cancer (CaP) generate data to predict outcomes. The objective of this study was to evaluate the clinical validity of an...
Journal of cancer research and clinical oncology
Jun 17, 2025
BACKGROUND: With the improvement of imaging, the screening rate of Pulmonary nodules (PNs) has further increased, but their identification of High-Risk Prognostic Pathological Components (HRPPC) is still a major challenge. In this study, we aimed to ...
BACKGROUND: Accurately predicting hematoma enlargement (HE) is crucial for improving the prognosis of patients with cerebral haemorrhage. Artificial intelligence (AI) is a potentially reliable assistant for medical image recognition. This study syste...
BACKGROUND: Early diagnosis of low ejection fraction (EF) remains challenging despite being a treatable condition. This study aimed to evaluate the effectiveness of an electrocardiogram (ECG)-based artificial intelligence (AI)-assisted clinical decis...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.