AIMC Topic: Prospective Studies

Clear Filters Showing 91 to 100 of 2308 articles

New machine-learning models outperform conventional risk assessment tools in Gastrointestinal bleeding.

Scientific reports
Rapid and accurate identification of high-risk acute gastrointestinal bleeding (GIB) patients is essential. We developed two machine-learning (ML) models to calculate the risk of in-hospital mortality in patients admitted due to overt GIB. We analyze...

Diastolic Versus Systolic or Mean Intraoperative Hypotension as Predictive of Perioperative Myocardial Injury in a White-Box Machine-Learning Model.

Anesthesia and analgesia
BACKGROUND: Intraoperative hypotension (IOH) and tachycardia are associated with perioperative myocardial injury (PMI), and thereby increased postoperative mortality. Patients undergoing vascular surgery are specifically at risk of developing cardiac...

Integrating ultrasound radiomics and clinicopathological features for machine learning-based survival prediction in patients with nonmetastatic triple-negative breast cancer.

BMC cancer
OBJECTIVE: This study aimed to evaluate the predictive value of implementing machine learning models based on ultrasound radiomics and clinicopathological features in the survival analysis of triple-negative breast cancer (TNBC) patients.

An explainable and accurate transformer-based deep learning model for wheeze classification utilizing real-world pediatric data.

Scientific reports
Auscultation is a method that involves listening to sounds from the patient's body, mainly using a stethoscope, to diagnose diseases. The stethoscope allows for non-invasive, real-time diagnosis, and it is ideal for diagnosing respiratory diseases an...

Validation of Artificial Intelligence-Based POTTER Calculator in Emergency General Surgery Patients Undergoing Laparotomy: Prospective, Bi-Institutional Study.

Journal of the American College of Surgeons
BACKGROUND: The Predictive Optimal Trees in Emergency Surgery Risk (POTTER) calculator, a widely used interpretable artificial intelligence risk calculator, has been validated in population-based studies and shown to predict outcomes in patients who ...

Improving reliability of movement assessment in Parkinson's disease using computer vision-based automated severity estimation.

Journal of Parkinson's disease
BackgroundClinical assessments of motor symptoms rely on observations and subjective judgments against standardized scales, leading to variability due to confounders. Improving inter-rater agreement is essential for effective disease management.Objec...

Functional MRI-based machine learning strategy for prediction of postoperative delirium in cardiac surgery patients: A secondary analysis of a prospective observational study.

Journal of clinical anesthesia
STUDY OBJECTIVE: Delirium is a common complication after cardiac surgery and is associated with poor prognosis. An effective delirium prediction model could identify high-risk patients who might benefit from targeted prevention strategies. We introdu...

Image quality and diagnostic performance of deep learning reconstruction for diffusion- weighted imaging in 3 T breast MRI.

European journal of radiology
PURPOSE: This study aimed to assess the image quality and the diagnostic value of deep learning reconstruction (DLR) for diffusion-weighted imaging (DWI) compared with conventional single-shot echo-planar imaging (ss-EPI) in 3 T breast MRI.

Association Between Aortic Imaging Features and Impaired Glucose Metabolism: A Deep Learning Population Phenotyping Approach.

Academic radiology
RATIONALE AND OBJECTIVES: Type 2 diabetes is a known risk factor for vascular disease with an impact on the aorta. The aim of this study was to develop a deep learning framework for quantification of aortic phenotypes from magnetic resonance imaging ...