Rapid and accurate identification of high-risk acute gastrointestinal bleeding (GIB) patients is essential. We developed two machine-learning (ML) models to calculate the risk of in-hospital mortality in patients admitted due to overt GIB. We analyze...
BACKGROUND: Intraoperative hypotension (IOH) and tachycardia are associated with perioperative myocardial injury (PMI), and thereby increased postoperative mortality. Patients undergoing vascular surgery are specifically at risk of developing cardiac...
OBJECTIVE: This study aimed to evaluate the predictive value of implementing machine learning models based on ultrasound radiomics and clinicopathological features in the survival analysis of triple-negative breast cancer (TNBC) patients.
RATIONALE AND OBJECTIVES: To investigate the effect of accelerated deep-learning (DL) multi-b-value DWI (Mb-DWI) on acquisition time, image quality, and predictive ability of microvascular invasion (MVI) in BCLC stage A hepatocellular carcinoma (HCC)...
Auscultation is a method that involves listening to sounds from the patient's body, mainly using a stethoscope, to diagnose diseases. The stethoscope allows for non-invasive, real-time diagnosis, and it is ideal for diagnosing respiratory diseases an...
Journal of the American College of Surgeons
Feb 14, 2025
BACKGROUND: The Predictive Optimal Trees in Emergency Surgery Risk (POTTER) calculator, a widely used interpretable artificial intelligence risk calculator, has been validated in population-based studies and shown to predict outcomes in patients who ...
BackgroundClinical assessments of motor symptoms rely on observations and subjective judgments against standardized scales, leading to variability due to confounders. Improving inter-rater agreement is essential for effective disease management.Objec...
STUDY OBJECTIVE: Delirium is a common complication after cardiac surgery and is associated with poor prognosis. An effective delirium prediction model could identify high-risk patients who might benefit from targeted prevention strategies. We introdu...
PURPOSE: This study aimed to assess the image quality and the diagnostic value of deep learning reconstruction (DLR) for diffusion-weighted imaging (DWI) compared with conventional single-shot echo-planar imaging (ss-EPI) in 3 T breast MRI.
RATIONALE AND OBJECTIVES: Type 2 diabetes is a known risk factor for vascular disease with an impact on the aorta. The aim of this study was to develop a deep learning framework for quantification of aortic phenotypes from magnetic resonance imaging ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.