BACKGROUND: Deep learning (DL) is promising to detect glaucoma. However, patients' privacy and data security are major concerns when pooling all data for model development. We developed a privacy-preserving DL model using the federated learning (FL) ...
RATIONALE AND OBJECTIVES: Perineural invasion (PNI) is an important prognostic biomarker for prostate cancer (PCa). This study aimed to develop and validate a predictive model integrating biparametric MRI-based deep learning radiomics and clinical ch...
Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an inte...
BACKGROUND: Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of the worldwide diseas...
IMPORTANCE: Treatment for intracranial pressure (ICP) has been increasingly informed by machine learning (ML)-derived ICP waveform characteristics. There are gaps, however, in understanding how ICP monitor type may bias waveform characteristics used ...
PURPOSE: Different imaging tools, including digital breast tomosynthesis (DBT), are frequently used for evaluating tumor response during neoadjuvant chemotherapy (NACT). This study aimed to explore whether using artificial intelligence (AI) for seria...
The prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP) remains a clinically significant challenge. This study aimed to develop an early predictive model utilizing artificial intelligence (AI)-derived quantitative assessment of lung lesio...
BACKGROUND: This study is to propose a clinically applicable 2-echelon (2e) diagnostic criteria for the analysis of thyroid nodules such that low-risk nodules are screened off while only suspicious or indeterminate ones are further examined by histop...