AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prospective Studies

Showing 321 to 330 of 2216 articles

Clear Filters

Developing a privacy-preserving deep learning model for glaucoma detection: a multicentre study with federated learning.

The British journal of ophthalmology
BACKGROUND: Deep learning (DL) is promising to detect glaucoma. However, patients' privacy and data security are major concerns when pooling all data for model development. We developed a privacy-preserving DL model using the federated learning (FL) ...

Development and Validation of a Biparametric MRI Deep Learning Radiomics Model with Clinical Characteristics for Predicting Perineural Invasion in Patients with Prostate Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Perineural invasion (PNI) is an important prognostic biomarker for prostate cancer (PCa). This study aimed to develop and validate a predictive model integrating biparametric MRI-based deep learning radiomics and clinical ch...

Integrated image-based deep learning and language models for primary diabetes care.

Nature medicine
Primary diabetes care and diabetic retinopathy (DR) screening persist as major public health challenges due to a shortage of trained primary care physicians (PCPs), particularly in low-resource settings. Here, to bridge the gaps, we developed an inte...

Wearable Data From Subjects Playing Super Mario, Taking University Exams, or Performing Physical Exercise Help Detect Acute Mood Disorder Episodes via Self-Supervised Learning: Prospective, Exploratory, Observational Study.

JMIR mHealth and uHealth
BACKGROUND: Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of the worldwide diseas...

Deriving Automated Device Metadata From Intracranial Pressure Waveforms: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury ICU Physiology Cohort Analysis.

Critical care explorations
IMPORTANCE: Treatment for intracranial pressure (ICP) has been increasingly informed by machine learning (ML)-derived ICP waveform characteristics. There are gaps, however, in understanding how ICP monitor type may bias waveform characteristics used ...

Deep learning analysis of serial digital breast tomosynthesis images in a prospective cohort of breast cancer patients who received neoadjuvant chemotherapy.

European journal of radiology
PURPOSE: Different imaging tools, including digital breast tomosynthesis (DBT), are frequently used for evaluating tumor response during neoadjuvant chemotherapy (NACT). This study aimed to explore whether using artificial intelligence (AI) for seria...

Model based on the automated AI-driven CT quantification is effective for the diagnosis of refractory Mycoplasma pneumoniae pneumonia.

Scientific reports
The prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP) remains a clinically significant challenge. This study aimed to develop an early predictive model utilizing artificial intelligence (AI)-derived quantitative assessment of lung lesio...

The clinical value of artificial intelligence in assisting junior radiologists in thyroid ultrasound: a multicenter prospective study from real clinical practice.

BMC medicine
BACKGROUND: This study is to propose a clinically applicable 2-echelon (2e) diagnostic criteria for the analysis of thyroid nodules such that low-risk nodules are screened off while only suspicious or indeterminate ones are further examined by histop...