AIMC Topic: Recurrence

Clear Filters Showing 91 to 100 of 165 articles

Extreme Gradient Boosting Model Has a Better Performance in Predicting the Risk of 90-Day Readmissions in Patients with Ischaemic Stroke.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
OBJECT: Ischemic stroke readmission within 90 days of hospital discharge is an important quality of care metric. The readmission rates of ischemic stroke patients are usually higher than those of patients with other chronic diseases. Our aim was to i...

Automatic detection of epileptic seizure based on approximate entropy, recurrence quantification analysis and convolutional neural networks.

Artificial intelligence in medicine
Epilepsy is the most common neurological disorder in humans. Electroencephalogram is a prevalent tool for diagnosing the epileptic seizure activity in clinical, which provides valuable information for understanding the physiological mechanisms behind...

Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks.

BMC infectious diseases
BACKGROUND: Establishing epidemiological models and conducting predictions seems to be useful for the prevention and control of human brucellosis. Autoregressive integrated moving average (ARIMA) models can capture the long-term trends and the period...

Deep learning-based survival prediction of oral cancer patients.

Scientific reports
The Cox proportional hazards model commonly used to evaluate prognostic variables in survival of cancer patients may be too simplistic to properly predict a cancer patient's outcome since it assumes that the outcome is a linear combination of covaria...

Using neuroimaging to predict relapse in stimulant dependence: A comparison of linear and machine learning models.

NeuroImage. Clinical
OBJECTIVE: Relapse rates are consistently high for stimulant user disorders. In order to obtain prognostic information about individuals in treatment, machine learning models have been applied to neuroimaging and clinical data. Yet few efforts have b...