AIMC Topic: RNA-Seq

Clear Filters Showing 31 to 40 of 185 articles

The G Protein-Coupled Receptor-Related Gene Signatures for Diagnosis and Prognosis in Glioblastoma: A Deep Learning Model Using RNA-Seq Data.

Asian Pacific journal of cancer prevention : APJCP
BACKGROUND: Glioblastoma (GBM) is the most aggressive cancer in the central nervous system in glial cells. Finding novel biomarkers in GBM offers numerous advantages that can contribute to early detection, personalized treatment, improved patient out...

DeSide: A unified deep learning approach for cellular deconvolution of tumor microenvironment.

Proceedings of the National Academy of Sciences of the United States of America
Cellular deconvolution via bulk RNA sequencing (RNA-seq) presents a cost-effective and efficient alternative to experimental methods such as flow cytometry and single-cell RNA-seq (scRNA-seq) for analyzing the complex cellular composition of tumor mi...

HiDDEN: a machine learning method for detection of disease-relevant populations in case-control single-cell transcriptomics data.

Nature communications
In case-control single-cell RNA-seq studies, sample-level labels are transferred onto individual cells, labeling all case cells as affected, when in reality only a small fraction of them may actually be perturbed. Here, using simulations, we demonstr...

Essential blood molecular signature for progression of sepsis-induced acute lung injury: Integrated bioinformatic, single-cell RNA Seq and machine learning analysis.

International journal of biological macromolecules
In this study, we aimed to identify an essential blood molecular signature for chacterizing the progression of sepsis-induced acute lung injury using integrated bioinformatic and machine learning analysis. The results showed that a total of 88 functi...

Advanced Prediction of Hepatic Oncogenic Transformation in HBV Patients via RNA-Seq Data Analysis and Deep Learning Techniques.

International journal of molecular sciences
Liver cancer, recognized as a significant global health issue, is increasingly correlated with Hepatitis B virus (HBV) infection, as evidenced by numerous scientific studies. This study aims to examine the correlation between HBV infection and the de...

Predictive biomarkers for embryotoxicity: a machine learning approach to mitigating multicollinearity in RNA-Seq.

Archives of toxicology
Multicollinearity, characterized by significant co-expression patterns among genes, often occurs in high-throughput expression data, potentially impacting the predictive model's reliability. This study examined multicollinearity among closely related...

Occlusion enhanced pan-cancer classification via deep learning.

BMC bioinformatics
Quantitative measurement of RNA expression levels through RNA-Seq is an ideal replacement for conventional cancer diagnosis via microscope examination. Currently, cancer-related RNA-Seq studies focus on two aspects: classifying the status and tissue ...

Detecting differentially expressed genes from RNA-seq data using fuzzy clustering.

The international journal of biostatistics
A two-group comparison test is generally performed on RNA sequencing data to detect differentially expressed genes (DEGs). However, the accuracy of this method is low due to the small sample size. To address this, we propose a method using fuzzy clus...