AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

ROC Curve

Showing 91 to 100 of 3115 articles

Clear Filters

Comparative analysis of deep learning architectures for thyroid eye disease detection using facial photographs.

BMC ophthalmology
PURPOSE: To compare two artificial intelligence (AI) models, residual neural networks ResNet-50 and ResNet-101, for screening thyroid eye disease (TED) using frontal face photographs, and to test these models under clinical conditions.

Predicting a failure of postoperative thromboprophylaxis in non-small cell lung cancer: A stacking machine learning approach.

PloS one
BACKGROUND: Non-small-cell lung cancer (NSCLC) and its surgery significantly increase the venous thromboembolism (VTE) risk. This study explored the VTE risk factors and established a machine-learning model to predict a failure of postoperative throm...

Comparing machine learning models for osteoporosis prediction in Tibetan middle aged and elderly women.

Scientific reports
The aim of this study was to establish the optimal prediction model by comparing the prediction effect of 6 kinds of prediction models containing biochemical indexes on the risk of osteoporosis in middle-aged and elderly women in Tibet. This study ad...

Impact of Tumor Location on Predicting Early-Stage Breast Cancer Patient Survivability Using Explainable Machine Learning Models.

JCO clinical cancer informatics
PURPOSE: This study aims to investigate the impact of tumor quadrant location on the 5-year early-stage breast cancer survivability prediction using explainable machine learning (ML) models. By integrating these predictive models with Shapley Additiv...

An Early Thyroid Screening Model Based on Transformer and Secondary Transfer Learning for Chest and Thyroid CT Images.

Technology in cancer research & treatment
IntroductionThyroid cancer is a common malignant tumor, and early diagnosis and timely treatment are crucial to improve patient prognosis. With the increasing use of enhanced CT scans, a new opportunity for early thyroid cancer screening has emerged....

Machine learning models for predicting metabolic dysfunction-associated steatotic liver disease prevalence using basic demographic and clinical characteristics.

Journal of translational medicine
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern that necessitates early screening and timely intervention to improve prognosis. The current diagnostic protocols for MASLD involve complex procedu...

Machine learning in lymphocyte and immune biomarker analysis for childhood thyroid diseases in China.

BMC pediatrics
OBJECTIVE: This study aims to characterize and analyze the expression of representative biomarkers like lymphocytes and immune subsets in children with thyroid disorders. It also intends to develop and evaluate a machine learning model to predict if ...

Identification of testicular cancer with T2-weighted MRI-based radiomics and automatic machine learning.

BMC cancer
BACKGROUND: Distinguishing between benign and malignant testicular lesions on clinical magnetic resonance imaging (MRI) is crucial for guiding treatment planning. However, conventional MRI-based radiomics to identify testicular cancer requires expert...