Azoospermia, defined by the absence of sperm in the ejaculate, manifests as obstructive azoospermia (OA) or non-obstructive azoospermia (NOA). Reliable predictive models utilizing biomarkers could aid in clinical decision-making. This study included ...
AIMS: Mortality risk after hospitalization for heart failure (HF) is high, especially in the first 90 days. This study aimed to construct a model automatically predicting 90 day post-discharge mortality using electronic health record (EHR) data 48 h ...
World journal of emergency surgery : WJES
Feb 13, 2025
BACKGROUND: Early treatment and prevention are the keys to reducing the mortality of VTE in patients with thoracic trauma. This study aimed to develop and validate an automatic prediction model based on machine learning for VTE risk screening in pati...
OBJECTIVE: Early prediction of long-term outcomes in patients with systemic lupus erythematosus (SLE) remains a great challenge in clinical practice. Our study aims to develop and validate predictive models for the mortality risk.
Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
Feb 13, 2025
PURPOSE: To develop models using different machine learning algorithms to predict high-risk symptom burden clusters in breast cancer patients undergoing chemotherapy, and to determine an optimal model.
Forecasting the occurrence and absence of novel disease outbreaks is essential for disease management, yet existing methods are often context-specific, require a long preparation time, and non-outbreak prediction remains understudied. To address this...
Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry
Feb 13, 2025
INTRODUCTION: To investigate the accuracy of an artificial intelligence (AI) prototype in determining bone mineral density (BMD) in chronic obstructive pulmonary disease (COPD) patients using chest computed tomography (CT) scans.
PURPOSE: This study aims to explore the potential of non-contrast abdominal CT radiomics and deep learning models in accurately diagnosing fatty liver.
INTRODUCTION: The interpretation of plain hip radiographs can vary widely among physicians. This study aimed to develop and validate a deep learning-based screening model for distinguishing normal hips from severe hip diseases on plain radiographs.
BACKGROUND: Macrosomia presents significant risks to both maternal and neonatal health, however, accurate antenatal prediction remains a major challenge. This study aimed to develop machine learning approaches to enhance the prediction of fetal macro...