AIMC Topic: ROC Curve

Clear Filters Showing 391 to 400 of 3364 articles

HEDDI-Net: heterogeneous network embedding for drug-disease association prediction and drug repurposing, with application to Alzheimer's disease.

Journal of translational medicine
BACKGROUND: The traditional process of developing new drugs is time-consuming and often unsuccessful, making drug repurposing an appealing alternative due to its speed and safety. Graph neural networks (GCNs) have emerged as a leading approach for pr...

Machine learning-based risk prediction of mild cognitive impairment in patients with chronic heart failure: A model development and validation study.

Geriatric nursing (New York, N.Y.)
Accurate identification of individuals at high risk for mild cognitive impairment (MCI) among chronic heart failure (CHF) patients is crucial for reducing rehospitalization and mortality rates. This study aimed to develop and validate a machine learn...

Automated recognition and segmentation of lung cancer cytological images based on deep learning.

PloS one
Compared with histological examination of lung cancer, cytology is less invasive and provides better preservation of complete morphology and detail. However, traditional cytological diagnosis requires an experienced pathologist to evaluate all sectio...

Deep learning and machine learning in CT-based COPD diagnosis: Systematic review and meta-analysis.

International journal of medical informatics
BACKGROUND: With advancements in medical technology and science, chronic obstructive pulmonary disease (COPD), one of the world's three major chronic diseases, has seen numerous remarkable outcomes when combined with artificial intelligence, particul...

Individual risk and prognostic value prediction by interpretable machine learning for distant metastasis in neuroblastoma: A population-based study and an external validation.

International journal of medical informatics
PURPOSE: Neuroblastoma (NB) is a childhood malignancy with a poor prognosis and a propensity for distant metastasis (DM). We aimed to establish machine learning (ML) based model to accurately predict risk of DM and prognosis of NB patients with DM.

Interpretable machine learning and radiomics in hip MRI diagnostics: comparing ONFH and OA predictions to experts.

Frontiers in immunology
PURPOSE: Distinguishing between Osteonecrosis of the femoral head (ONFH) and Osteoarthritis (OA) can be subjective and vary between users with different backgrounds and expertise. This study aimed to construct and evaluate several Radiomics-based mac...

Clinical Validation of an AI System for Pneumoconiosis Detection Using Chest X-rays.

Journal of occupational and environmental medicine
OBJECTIVE: The aims of the study were to develop and evaluate "eTóraxLaboral," an intelligent platform for detecting signs of pneumoconiosis in chest radiographs and to assess its predictive capacity.

Establishing a preoperative predictive model for gallbladder adenoma and cholesterol polyps based on machine learning: a multicentre retrospective study.

World journal of surgical oncology
BACKGROUND: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperativ...

Identification of biomarkers associated with coronary artery disease and non-alcoholic fatty liver disease by bioinformatics analysis and machine learning.

Scientific reports
The constantly emerging evidence indicates a close association between coronary artery disease (CAD) and non-alcoholic fatty liver disease (NAFLD). However, the exact mechanisms underlying their mutual relationship remain undefined. This study aims t...

Identifying Primary Sites of Spinal Metastases: Expert-Derived Features vs. ResNet50 Model Using Nonenhanced MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: The spinal column is a frequent site for metastases, affecting over 30% of solid tumor patients. Identifying the primary tumor is essential for guiding clinical decisions but often requires resource-intensive diagnostics.