AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 181 to 190 of 2873 articles

Machine learning demonstrates clinical utility in distinguishing retinoblastoma from pseudo retinoblastoma with RetCam images.

Ophthalmic genetics
BACKGROUND: Retinoblastoma is diagnosed and treated without biopsy based solely on appearance (with the indirect ophthalmoscope and imaging). More than 20 benign ophthalmic disorders resemble retinoblastoma and errors in diagnosis continue to be made...

Automated post-run analysis of arrayed quantitative PCR amplification curves using machine learning.

Gates open research
BACKGROUND: The TaqMan Array Card (TAC) is an arrayed, high-throughput qPCR platform that can simultaneously detect multiple targets in a single reaction. However, the manual post-run analysis of TAC data is time consuming and subject to interpretati...

AI-based assessment of longitudinal multiple sclerosis MRI: Strengths and weaknesses in clinical practice.

European journal of radiology
OBJECTIVES: In Multiple Sclerosis (MS) cerebral MRI is essential for disease and treatment monitoring. For this purpose, software solutions are available to support the radiologist with image interpretation and reporting of follow up imaging. Aim of ...

Deep learning-aided diagnosis of acute abdominal aortic dissection by ultrasound images.

Emergency radiology
PURPOSE: Acute abdominal aortic dissection (AD) is a serious disease. Early detection based on ultrasound (US) can improve the prognosis of AD, especially in emergency settings. We explored the ability of deep learning (DL) to diagnose abdominal AD i...

Clinical evaluation of a multiplex droplet digital PCR for diagnosing suspected bloodstream infections: a prospective study.

Frontiers in cellular and infection microbiology
BACKGROUND: Though droplet digital PCR (ddPCR) has emerged as a promising tool for early pathogen detection in bloodstream infections (BSIs), more studies are needed to support its clinical application widely due to different ddPCR platforms with dis...

Artificial intelligence in healthcare applications targeting cancer diagnosis-part II: interpreting the model outputs and spotlighting the performance metrics.

Oral surgery, oral medicine, oral pathology and oral radiology
BACKGROUND: The lack of standardized performance assessment metrics and the inconsistent reporting of results can lead to the presentation of overly optimistic outcomes that fail to accurately represent key aspects of the Machine Learning framework a...

Evaluating a clinically available artificial intelligence model for intracranial aneurysm detection: a multi-reader study and algorithmic audit.

Neuroradiology
PURPOSE: We aimed to validate a clinically available artificial intelligence (AI) model to assist general radiologists in the detection of intracranial aneurysm (IA) in a multi-reader multi-case (MRMC) study, and to explore its performance in routine...

Machine learning prediction model for oral mucositis risk in head and neck radiotherapy: a preliminary study.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: Oral mucositis (OM) reflects a complex interplay of several risk factors. Machine learning (ML) is a promising frontier in science, capable of processing dense information. This study aims to assess the performance of ML in predicting OM ris...

Artificial intelligence performance in ultrasound-based lymph node diagnosis: a systematic review and meta-analysis.

BMC cancer
BACKGROUND AND OBJECTIVES: Accurate classification of lymphadenopathy is essential for determining the pathological nature of lymph nodes (LNs), which plays a crucial role in treatment selection. The biopsy method is invasive and carries the risk of ...

Comparative diagnostic accuracy of ChatGPT-4 and machine learning in differentiating spinal tuberculosis and spinal tumors.

The spine journal : official journal of the North American Spine Society
BACKGROUND: In clinical practice, distinguishing between spinal tuberculosis (STB) and spinal tumors (ST) poses a significant diagnostic challenge. The application of AI-driven large language models (LLMs) shows great potential for improving the accu...