Advances in single-cell '-omics' allow unprecedented insights into the transcriptional profiles of individual cells and, when combined with large-scale perturbation screens, enable measuring of the effect of targeted perturbations on the whole transc...
Single-cell RNA sequencing (scRNA-seq) is a powerful tool for characterizing tumor heterogeneity, yet accurately identifying malignant cells remains challenging. Here, we propose scMalignantFinder, a machine learning tool specifically designed to dis...
Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular...
Continuous high-resolution imaging of the disease-mediating blood stages of the human malaria parasite Plasmodium falciparum faces challenges due to photosensitivity, small parasite size, and the anisotropy and large refractive index of host erythroc...
The spatial conformation of chromosomes and genomes of single cells is relevant to cellular function and useful for elucidating the mechanism underlying gene expression and genome methylation. The chromosomal contacts (i.e. chromosomal regions in spa...
Discovering a lower-dimensional embedding of single-cell data can improve downstream analysis. The embedding should encapsulate both the high-level features and low-level variations. While existing generative models attempt to learn such low-dimensio...
Computer methods and programs in biomedicine
40112688
BACKGROUND AND OBJECTIVE: Single-cell imaging plays a key role in various fields, including drug development, disease diagnosis, and personalized medicine. To obtain multi-modal information from a single-cell image, especially for label-free cells, t...
Deep learning techniques are increasingly utilized to analyze large-scale single-cell RNA sequencing (scRNA-seq) data, offering valuable insights from complex transcriptome datasets. Geneformer, a pre-trained model using a Transformer Encoder archite...
Rapid advancement of sequencing technologies now allows for the utilization of precise signals at single-cell resolution in various omics studies. However, the massive volume, ultra-high dimensionality, and high sparsity nature of single-cell data ha...
MOTIVATION: Single-cell RNA sequencing (scRNA-seq) analysis relies heavily on effective clustering to facilitate numerous downstream applications. Although several machine learning methods have been developed to enhance single-cell clustering, most a...