AIMC Topic: Single-Cell Analysis

Clear Filters Showing 31 to 40 of 543 articles

scRSSL: Residual semi-supervised learning with deep generative models to automatically identify cell types.

IET systems biology
Single-cell sequencing (scRNA-seq) allows researchers to study cellular heterogeneity in individual cells. In single-cell transcriptomics analysis, identifying the cell type of individual cells is a key task. At present, single-cell datasets often fa...

Transfer learning of multicellular organization via single-cell and spatial transcriptomics.

PLoS computational biology
Biological tissues exhibit complex gene expression and multicellular patterns that are valuable to dissect. Single-cell RNA sequencing (scRNA-seq) provides full coverages of genes, but lacks spatial information, whereas spatial transcriptomics (ST) m...

GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data.

BMC bioinformatics
BACKGROUND: A gene regulatory network (GRN) is a graph-level representation that describes the regulatory relationships between transcription factors and target genes in cells. The reconstruction of GRNs can help investigate cellular dynamics, drug d...

Circular RNA discovery with emerging sequencing and deep learning technologies.

Nature genetics
Circular RNA (circRNA) represents a type of RNA molecule characterized by a closed-loop structure that is distinct from linear RNA counterparts. Recent studies have revealed the emerging role of these circular transcripts in gene regulation and disea...

Molecular features and diagnostic modeling of synovium- and IPFP-derived OA macrophages in the inflammatory microenvironment via scRNA-seq and machine learning.

Journal of orthopaedic surgery and research
BACKGROUND: Osteoarthritis (OA) is the leading cause of degenerative joint disease, with total joint replacement as the only definitive cure. However, no disease-modifying therapy is currently available. Inflammation and fibrosis in the infrapatellar...

Deep Visual Proteomics maps proteotoxicity in a genetic liver disease.

Nature
Protein misfolding diseases, including α1-antitrypsin deficiency (AATD), pose substantial health challenges, with their cellular progression still poorly understood. We use spatial proteomics by mass spectrometry and machine learning to map AATD in h...

Artificial intelligence-assisted RNA-binding protein signature for prognostic stratification and therapeutic guidance in breast cancer.

Frontiers in immunology
BACKGROUND: Breast cancer is the most common malignancy in women globally, with significant heterogeneity affecting prognosis and treatment. RNA-binding proteins play vital roles in tumor progression, yet their prognostic potential remains unclear. T...

Single-Cell Sequencing-Guided Annotation of Rare Tumor Cells for Deep Learning-Based Cytopathologic Diagnosis of Early Lung Cancer.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Deep learning (DL) models for medical image analysis are majorly bottlenecked by the lack of well-annotated datasets. Bronchoalveolar lavage (BAL) is a minimally invasive procedure to diagnose lung cancer, but BAL cytology suffers from low sensitivit...

Integrating Machine Learning and Bulk and Single-Cell RNA Sequencing to Decipher Diverse Cell Death Patterns for Predicting the Prognosis of Neoadjuvant Chemotherapy in Breast Cancer.

International journal of molecular sciences
Breast cancer (BRCA) continues to pose a serious risk to women's health worldwide. Neoadjuvant chemotherapy (NAC) is a critical treatment strategy. Nevertheless, the heterogeneity in treatment outcomes necessitates the identification of reliable biom...

Identification of novel metabolism-related biomarkers of Kawasaki disease by integrating single-cell RNA sequencing analysis and machine learning algorithms.

Frontiers in immunology
BACKGROUND: The bile acid metabolism (BAM) and fatty acid metabolism (FAM) have been implicated in Kawasaki disease (KD), but their precise mechanisms remain unclear. Identifying signature cells and genes related to BAM and FAM could offer a deeper u...