European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery
Aug 28, 2022
OBJECTIVES: To assess the performance of DeepSurv, a deep learning-based model in the survival prediction of laryngeal squamous cell carcinoma (LSCC) using the Surveillance, Epidemiology, and End Results (SEER) database.
Computational intelligence and neuroscience
Jun 30, 2022
Oral cancer is one of the lethal diseases among the available malignant tumors globally, and it has become a challenging health issue in developing and low-to-middle income countries. The prognosis of oral cancer remains poor because over 50% of pati...
OBJECTIVE: Tissue slides from Oral cavity squamous cell carcinoma (OC-SCC), particularly the epithelial regions, hold morphologic features that are both diagnostic and prognostic. Yet, previously developed approaches for automated epithelium segmenta...
Oral squamous cell carcinoma (OSCC) is prevalent around the world and is associated with poor prognosis. OSCC is typically diagnosed from tissue biopsy sections by pathologists who rely on their empirical experience. Deep learning models may improve ...
BACKGROUND: Viral infections are prevalent in human cancers and they have great diagnostic and theranostic values in clinical practice. Recently, their potential of shaping the tumor immune microenvironment (TIME) has been related to the immunotherap...
The epidemic increase in the incidence of Human Papilloma Virus (HPV) related Oropharyngeal Squamous Cell Carcinomas (OPSCCs) in several countries worldwide represents a significant public health concern. Although gender neutral HPV vaccination progr...
BACKGROUND: This study aimed to assess the utility of deep learning analysis using pretreatment FDG-PET images to predict local treatment outcome in oropharyngeal squamous cell carcinoma (OPSCC) patients.
OBJECTIVE: To propose the prediction model for degree of differentiation for locally advanced esophageal cancer patients from the planning CT image by radiomics analysis with machine learning.
Clinical cancer research : an official journal of the American Association for Cancer Research
May 4, 2021
PURPOSE: Accurate prognostic stratification of patients with oropharyngeal squamous cell carcinoma (OPSCC) is crucial. We developed an objective and robust deep learning-based fully-automated tool called the DeepPET-OPSCC biomarker for predicting ove...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.