AI Medical Compendium Topic:
Supervised Machine Learning

Clear Filters Showing 1091 to 1100 of 1634 articles

DrugR+: A comprehensive relational database for drug repurposing, combination therapy, and replacement therapy.

Computers in biology and medicine
Drug repurposing or repositioning, which introduces new applications of the existing drugs, is an emerging field in drug discovery scope. To enhance the success rate of the research and development (R&D) process in a cost- and time-effective manner, ...

All-optical spiking neurosynaptic networks with self-learning capabilities.

Nature
Software implementations of brain-inspired computing underlie many important computational tasks, from image processing to speech recognition, artificial intelligence and deep learning applications. Yet, unlike real neural tissue, traditional computi...

Self-supervised learning of the biologically-inspired obstacle avoidance of hexapod walking robot.

Bioinspiration & biomimetics
In this paper, we propose an integrated biologically inspired visual collision avoidance approach that is deployed on a real hexapod walking robot. The proposed approach is based on the Lobula giant movement detector (LGMD), a neural network for loom...

An ensemble learning method for asthma control level detection with leveraging medical knowledge-based classifier and supervised learning.

Journal of medical systems
Approximately 300 million people are afflicted with asthma around the world, with the estimated death rate of 250,000 cases, indicating the significance of this disease. If not treated, it can turn into a serious public health problem. The best metho...

Weakly Supervised Estimation of Shadow Confidence Maps in Fetal Ultrasound Imaging.

IEEE transactions on medical imaging
Detecting acoustic shadows in ultrasound images is important in many clinical and engineering applications. Real-time feedback of acoustic shadows can guide sonographers to a standardized diagnostic viewing plane with minimal artifacts and can provid...

Refining humane endpoints in mouse models of disease by systematic review and machine learning-based endpoint definition.

ALTEX
Ideally, humane endpoints allow for early termination of experiments by minimizing an animal's discomfort, distress and pain, while ensuring that scientific objectives are reached. Yet, lack of commonly agreed methodology and heterogeneity of cut-off...

Approximating the Ideal Observer and Hotelling Observer for Binary Signal Detection Tasks by Use of Supervised Learning Methods.

IEEE transactions on medical imaging
It is widely accepted that the optimization of medical imaging system performance should be guided by task-based measures of image quality (IQ). Task-based measures of IQ quantify the ability of an observer to perform a specific task, such as detecti...

A directed learning strategy integrating multiple omic data improves genomic prediction.

Plant biotechnology journal
Genomic prediction (GP) aims to construct a statistical model for predicting phenotypes using genome-wide markers and is a promising strategy for accelerating molecular plant breeding. However, current progress of phenotype prediction using genomic d...

[Can Big Data change our practices?].

Journal francais d'ophtalmologie
The European Medicines Agency has defined Big Data by the "3 V's": Volume, Velocity and Variety. These large databases allow access to real life data on patient care. They are particularly suited for studies of adverse events and pharmacoepidemiology...

A Supervised Approach to Robust Photoplethysmography Quality Assessment.

IEEE journal of biomedical and health informatics
Early detection of Atrial Fibrillation (AFib) is crucial to prevent stroke recurrence. New tools for monitoring cardiac rhythm are important for risk stratification and stroke prevention. As many of new approaches to long-term AFib detection are now ...