AI Medical Compendium Journal:
International journal of biological macromolecules

Showing 31 to 40 of 120 articles

Deep learning-driven semi-rational design in phenylalanine ammonia-lyase for enhanced catalytic efficiency.

International journal of biological macromolecules
Phenylalanine ammonia-lyase (PAL) possesses significant potential in agriculture, industry, and the treatment of various diseases, including cancer. In particular, PAL derived from Anabaena variabilis (AvPAL) has been successfully utilized in clinica...

Extraction of polysaccharides from Camellia oleifera leaves by dual enzymes combined with deep eutectic solvents screened by ANN and COSMO-RS.

International journal of biological macromolecules
Camellia oleifera leaves were byproduct of the C. oleifera industry which was rich in polysaccharides. Deep eutectic solvent-dual enzyme system (DES-dEAE) was established to achieve the simultaneous hydrolysis reaction of dual enzymes and DES extract...

Molecular structure of NRG-1 protein and its impact on adult hypertension and heart failure: A new clinical Indicator diagnosis based on advanced machine learning.

International journal of biological macromolecules
The purpose of this study was to investigate the molecular structure of NRG-1 protein and its mechanism of action in adult hypertensive heart failure. The amino acid sequence of NRG-1 protein was analyzed by bioinformatics method. High-throughput seq...

Integration of single-cell and bulk RNA sequencing data using machine learning identifies oxidative stress-related genes LUM and PCOLCE2 as potential biomarkers for heart failure.

International journal of biological macromolecules
Oxidative stress (OS) is a pivotal mechanism driving the progression of cardiovascular diseases, particularly heart failure (HF). However, the comprehensive characterisation of OS-related genes in HF remains largely unexplored. In the present study, ...

PmiProPred: A novel method towards plant miRNA promoter prediction based on CNN-Transformer network and convolutional block attention mechanism.

International journal of biological macromolecules
It is crucial to understand the transcription mechanisms of miRNAs, especially considering the presence of peptides encoded by miRNAs. Since promoters function as the switch for gene transcription, precisely identifying these regions is essential for...

Design and optimization of tamarind seed polysaccharide-based scaffold for tissue engineering applications using statistical modeling and machine learning, and it's in-vitro validation.

International journal of biological macromolecules
This study explores the development and optimization of a novel biomaterial scaffold for tissue engineering, composed of Tamarind seed polysaccharide (TSP), Hydroxypropyl methylcellulose (HPMC), Chitosan (CS), and Sodium alginate (ALG). Scaffold prop...

MVGNN-PPIS: A novel multi-view graph neural network for protein-protein interaction sites prediction based on Alphafold3-predicted structures and transfer learning.

International journal of biological macromolecules
Protein-protein interactions (PPI) are crucial for understanding numerous biological processes and pathogenic mechanisms. Identifying interaction sites is essential for biomedical research and targeted drug development. Compared to experimental metho...

Sulfonic acid functionalized β-amyloid peptide aggregation inhibitors and antioxidant agents for the treatment of Alzheimer's disease: Combining machine learning, computational, in vitro and in vivo approaches.

International journal of biological macromolecules
Alzheimer's disease (AD) is characterized as a neurodegenerative disorder that is caused by plaque formation by accumulating β-amyloid (Aβ), leading to neurocognitive function and impaired mental development. Thus, targeting Aβ represents a promising...

MCTASmRNA: A deep learning framework for alternative splicing events classification.

International journal of biological macromolecules
Alternative splicing (AS) plays crucial post-transcriptional gene function regulation roles in eukaryotic. Despite progress in studying AS at the RNA level, existing methods for AS event identification face challenges such as inefficiency, lengthy pr...

An intelligent fruit freshness monitoring system using hydrophobic indicator labels based on methylcellulose, k-carrageenan, and sodium tripolyphosphate, combined with deep learning.

International journal of biological macromolecules
As the demand for food quality and safety continues to rise, pH-responsive intelligent packaging technologies have found widespread application in the monitoring of food freshness. This study introduces a methylcellulose (MC)-based indicator label de...