Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
39243889
BACKGROUND: Cardiovascular magnetic resonance (CMR) chemical shift encoding (CSE) enables myocardial fat imaging. We sought to develop a deep learning network (fast chemical shift encoding [FastCSE]) to accelerate CSE.
Journal of cachexia, sarcopenia and muscle
39343707
BACKGROUND: Hip-related pain (HRP) affects young to middle-aged active adults and impacts physical activity, finances and quality of life. HRP includes conditions like femoroacetabular impingement syndrome and labral tears. Lateral hip muscle dysfunc...
BACKGROUND: Obesity has emerged as a growing global public health concern over recent decades. Obesity prevalence exhibits substantial global variation, ranging from less than 5% in regions like China, Japan, and Africa to rates exceeding 75% in urba...
OBJECTIVE: To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).
BACKGROUND: Correctly distinguishing between benign and malignant pulmonary nodules can avoid unnecessary invasive procedures. This study aimed to construct a deep learning radiomics clinical nomogram (DLRCN) for predicting malignancy of pulmonary no...
International journal of computer assisted radiology and surgery
39489851
PURPOSE: Lower-limb muscle mass reduction and fatty degeneration develop in patients with knee osteoarthritis (KOA) and could affect their symptoms, satisfaction, expectation and functional activities. The Knee Society Scoring System (KSS) includes p...
OBJECTIVES: This study expolored the relationship between perivascular adipose tissue (PVAT) radiomic features derived from coronary computed tomography angiography (CCTA) and the presence of coronary artery plaques. It aimed to determine whether PVA...
BACKGROUND: Accurate and automatic segmentation of pericardial adipose tissue (PEAT) in cardiac magnetic resonance (MR) images is essential for the diagnosis and treatment of cardiovascular diseases. Precise segmentation is challenging due to high co...
OBJECTIVES: Body composition assessment using CT images at the L3-level is increasingly applied in cancer research and has been shown to be strongly associated with long-term survival. Robust high-throughput automated segmentation is key to assess la...