BACKGROUND: This study aims to develop a deep learning-based algorithm dedicated to the automated classification of choroidal layers in en face swept-source optical coherence tomography (SS-OCT) images of the eye.
BACKGROUND: Thrombosis of arteriovenous fistulas represents a prevalent complication among patients undergoing hemodialysis, characterized by a notably high incidence rate. Presently, there is an absence of robust assessment tools capable of predicti...
BACKGROUND: Papillary thyroid microcarcinoma (PTMC) is the most common malignant subtype of thyroid cancer. Preoperative assessment of the risk of central compartment lymph node metastasis (CCLNM) can provide scientific support for personalized treat...
OBJECTIVE: This study aimed to identify the hyoid bone (HB) using the nnU-Net based artificial intelligence (AI) model in cone beam computed tomography (CBCT) images and assess the model's success in automatic segmentation.
OBJECTIVE: This study aims to establish a machine learning prediction model to explore the correlation between contrast-enhanced mammography (CEM) imaging features and molecular subtypes of mass-type breast cancer.
BACKGROUND: T2-weighted imaging (T2WI), renowned for its sensitivity to edema and lesions, faces clinical limitations due to prolonged scanning time, increasing patient discomfort, and motion artifacts. The individual applications of artificial intel...
BACKGROUND: Meningioma consistency critically impacts surgical planning, as soft tumors are easier to resect than hard tumors. Current assessments of tumor consistency using MRI are subjective and lack quantitative accuracy. Integrating deep learning...
OBJECTIVE: To develop and validate a novel diagnostic model for detecting bacterial infections in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) using advanced machine learning algorithms. The focus is on improving ...
Effective clinical management of patients with cancer requires highly accurate diagnosis, precise therapy selection, and highly sensitive monitoring of disease burden. Caris Assure is a multifunctional blood-based assay that couples whole exome and w...
Scientists aim to create a system that can predict the likelihood of newborns being admitted to the neonatal intensive care unit (NICU) by combining various statistical methods. This prediction could potentially reduce the negative health outcomes, d...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.