AIMC Topic: Aged

Clear Filters Showing 1771 to 1780 of 12826 articles

Ultrasound Predicts Drug-Induced Sleep Endoscopy Findings Using Machine Learning Models.

The Laryngoscope
OBJECTIVES: Ultrasound is a promising low-risk imaging modality that can provide objective airway measurements that may circumvent limitations of drug-induced sleep endoscopy (DISE). This study was devised to identify ultrasound-derived anatomical me...

Deep Learning-Based Precontrast CT Parcellation for MRI-Free Brain Amyloid PET Quantification.

Clinical nuclear medicine
PURPOSE: This study aimed to develop a deep learning (DL) model for brain region parcellation using CT data from PET/CT scans to enable accurate amyloid quantification in 18 F-FBB PET/CT without relying on high-resolution MRI.

Development and external validation of a machine learning model to predict the initial dose of vancomycin for targeting an area under the concentration-time curve of 400-600 mg∙h/L.

International journal of medical informatics
PURPOSE: To develop and validate a novel artificial intelligence model for predicting the initial empiric dose of vancomycin, with the aim of achieving an area under the concentration-time curve (AUC) of 400-600 mg∙h/L, using individual clinical data...

Enhancing quantitative coronary angiography (QCA) with advanced artificial intelligence: comparison with manual QCA and visual estimation.

The international journal of cardiovascular imaging
Artificial intelligence-based quantitative coronary angiography (AI-QCA) was introduced to address manual QCA's limitations in reproducibility and correction process. The present study aimed to assess the performance of an updated AI-QCA solution (MP...

Decision tree-based learning and laboratory data mining: an efficient approach to amebiasis testing.

Parasites & vectors
BACKGROUND: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples. Howeve...

Fully automated segmentation and classification of renal tumors on CT scans via machine learning.

BMC cancer
BACKGROUND: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.

Estimating the Prevalence of Schizophrenia in the General Population of Japan Using an Artificial Neural Network-Based Schizophrenia Classifier: Web-Based Cross-Sectional Survey.

JMIR formative research
BACKGROUND: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from ...