AIMC Topic: Alzheimer Disease

Clear Filters Showing 561 to 570 of 1023 articles

Cortical surface registration using unsupervised learning.

NeuroImage
Non-rigid cortical registration is an important and challenging task due to the geometric complexity of the human cortex and the high degree of inter-subject variability. A conventional solution is to use a spherical representation of surface propert...

Fully bayesian longitudinal unsupervised learning for the assessment and visualization of AD heterogeneity and progression.

Aging
Tau pathology and brain atrophy are the closest correlate of cognitive decline in Alzheimer's disease (AD). Understanding heterogeneity and longitudinal progression of atrophy during the disease course will play a key role in understanding AD pathoge...

Realistic simulation of virtual multi-scale, multi-modal patient trajectories using Bayesian networks and sparse auto-encoders.

Scientific reports
Translational research of many disease areas requires a longitudinal understanding of disease development and progression across all biologically relevant scales. Several corresponding studies are now available. However, to compile a comprehensive pi...

Selective Neuronal Vulnerability in Alzheimer's Disease: A Network-Based Analysis.

Neuron
A major obstacle to treating Alzheimer's disease (AD) is our lack of understanding of the molecular mechanisms underlying selective neuronal vulnerability, a key characteristic of the disease. Here, we present a framework integrating high-quality neu...

A Combined Deep-Learning and Lattice Boltzmann Model for Segmentation of the Hippocampus in MRI.

Sensors (Basel, Switzerland)
Segmentation of the hippocampus (HC) in magnetic resonance imaging (MRI) is an essential step for diagnosis and monitoring of several clinical situations such as Alzheimer's disease (AD), schizophrenia and epilepsy. Automatic segmentation of HC struc...

Insight into potent leads for alzheimer's disease by using several artificial intelligence algorithms.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Several proteins including S-nitrosoglutathione reductase (GSNOR), complement Factor D, complement 3b (C3b) and Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK), have been demonstrated to be involved in pathogenesis pathways for Alzheimer's ...

Stratifying patients using fast multiple kernel learning framework: case studies of Alzheimer's disease and cancers.

BMC medical informatics and decision making
BACKGROUND: Predictive patient stratification is greatly emerging, because it allows us to prospectively identify which patients will benefit from what interventions before their condition worsens. In the biomedical research, a number of stratificati...

MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer's Disease: A Survey.

Sensors (Basel, Switzerland)
Many neurological diseases and delineating pathological regions have been analyzed, and the anatomical structure of the brain researched with the aid of magnetic resonance imaging (MRI). It is important to identify patients with Alzheimer's disease (...

Application of Deep Learning to Predict Standardized Uptake Value Ratio and Amyloid Status on F-Florbetapir PET Using ADNI Data.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: Cortical amyloid quantification on PET by using the standardized uptake value ratio is valuable for research studies and clinical trials in Alzheimer disease. However, it is resource intensive, requiring co-registered MR imagi...